Skip to main content
Log in

Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Bioaerosols are airborne suspensions of fine solid or liquid particles containing biological substances such as viruses, bacteria, cellular debris, fungal spores, mycelium, and byproducts of microbial metabolism. The global Coronavirus disease 2019 (COVID-19) pandemic and the previous emergence of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and influenza have increased the need for reliable and effective monitoring tools for bioaerosols. Bioaerosol collection and detection have aroused considerable attention. Current bioaerosol sampling and detection techniques suffer from long response time, low sensitivity, and high costs, and these drawbacks have forced the development of novel monitoring strategies. Microfluidic technique is considered a breakthrough for high performance analysis of bioaerosols. In recent years, several emerging methods based on microfluidics have been developed and reported for collection and detection of bioaerosols. The unique advantages of microfluidic technique have enabled the integration of bioaerosol collection and detection, which has a higher efficiency over conventional methods. This review focused on the research progress of bioaerosol collection and detection methods based on microfluidic techniques, with special attention on virus aerosols and bacterial aerosols. Different from the existing reviews, this work took a unique perspective of the targets to be collected and detected in bioaerosols, which would provide a direct index of bioaerosol categories readers may be interested in. We also discussed integrated microfluidic monitoring system for bioaerosols. Additionally, the application of bioaerosol detection in biomedicine was presented. Finally, the current challenges in the field of bioaerosol monitoring are presented and an outlook given of future developments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen H, Yao M (2018) A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial detection. J Aerosol Sci 117:212–223. https://doi.org/10.1016/j.jaerosci.2017.11.012

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Mainelis G (2020) Bioaerosol sampling: classical approaches, advances, and perspectives. Aerosol Sci Technol 54(5):496–519. https://doi.org/10.1080/02786826.2019.1671950

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ghosh B, Lal H, Srivastava A (2015) Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ Int 85:254–272. https://doi.org/10.1016/j.envint.2015.09.018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kang JS, Lee KS, Kim SS, Bae G-N, Jung JH (2014) Real-time detection of an airborne microorganism using inertial impaction and mini-fluorescent microscopy. Lab Chip 14(1):244–251. https://doi.org/10.1039/c3lc50805f

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Qi W, Liu Y, Essien D, Zhang Q, Lin J (2021) Recent advances on bioaerosol collection and detection in microfluidic chips. Anal Chem 93(26):9013–9022. https://doi.org/10.1021/acs.analchem.1c00908

    Article  CAS  PubMed  Google Scholar 

  6. Heo KJ, Ko HS, Jeong SB, Kim SB, Jung JH (2021) Enriched aerosol-to-hydrosol transfer for rapid and continuous monitoring of bioaerosols. Nano Lett 21(2):1017–1024. https://doi.org/10.1021/acs.nanolett.0c04096

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Atlas RM (2002) Bioterriorism: from threat to reality. Annu Rev Microbiol 56:167–185. https://doi.org/10.1146/annurev.micro.56.012302.16061

    Article  CAS  PubMed  Google Scholar 

  8. Fischer NO, Tarasow TM, Tok JBH (2007) Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms. Analyst 132(3):187–191. https://doi.org/10.1039/b615477h

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang N, Li T, Dong S, Zhang S, Jia Y, Mao H, Zhang Z, Zhang F, Pan X, Zhang X, Dong Z (2022) Detection of airborne pathogens with single photon counting and a real-time spectrometer on microfluidics. Lab Chip 22(24):4995–5007. https://doi.org/10.1039/d2lc00934j

    Article  CAS  PubMed  Google Scholar 

  10. Sameenoi Y, Panymeesamer P, Supalakorn N, Koehler K, Chailapakul O, Henry CS, Volckens J (2013) Microfluidic paper-based analytical device for aerosol oxidative activity. Environ Sci Technol 47(2):932–940. https://doi.org/10.1021/es304662w

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ (2006) Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 80(16):7918–7928. https://doi.org/10.1128/JVI.00645-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang AX, Wang BJ, Wang CC, Lian DZ, Shi EY, Ren FY, Yan GY (2021) Thermophoretic collection of virus-laden (SARS-CoV-2) aerosols. Biomicrofluidics 15(2):024101. https://doi.org/10.1063/5.0039247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim S, Akarapipad P, Nguyen BT, Breshears LE, Sosnowski K, Baker J, Uhrlaub JL, Nikolich-Žugich J, Yoon J-Y (2022) Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip. Biosens Bioelectron 200:113912. https://doi.org/10.1016/j.bios.2021.113912

    Article  CAS  PubMed  Google Scholar 

  14. Xiong H, Ye X, Li Y, Qi J, Fang X, Kong J (2021) Efficient microfluidic-based air sampling/monitoring platform for detection of aerosol SARS-CoV-2 On-site. Anal Chem 93(9):4270–4276. https://doi.org/10.1021/acs.analchem.0c05154

    Article  CAS  PubMed  Google Scholar 

  15. Nuwarda RF, Alharbi AA, Kayser V (2021) An overview of influenza viruses and vaccines. Vaccines (Basel) 9(9). https://doi.org/10.3390/vaccines9091032

  16. Jiang X, Loeb JC, Pan M, Tilly TB, Eiguren-Fernandez A, Lednicky JA, Wu C-Y, Fan ZH (2021) Integration of sample preparation with RNA-Amplification in a hand-held device for airborne virus detection. Anal Chim Acta 1165:338542. https://doi.org/10.1016/j.aca.2021.338542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee I, Seok Y, Jung H, Yang B, Lee J, Kim J, Pyo H, Song C-S, Choi W, Kim M-G, Lee J (2020) Integrated bioaerosol sampling/monitoring platform: field-deployable and rapid detection of airborne viruses. ACS Sens 5(12):3915–3922. https://doi.org/10.1021/acssensors.0c01531

    Article  CAS  PubMed  Google Scholar 

  18. Bhardwaj J, Kim M-W, Jang J (2020) Rapid airborne influenza virus quantification using an antibody-based electrochemical paper sensor and electrostatic particle concentrator. Environ Sci Technol 54(17):10700–10712. https://doi.org/10.1021/acs.est.0c00441

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bhardwaj J, Sharma A, Jang J (2019) Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. Biosens Bioelectron 126:36–43. https://doi.org/10.1016/j.bios.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  20. Shin J, Kim HR, Bae PK, Yoo H, Kim J, Choi Y, Kang A, Yun WS, Shin YB, Hwang J, Hong S (2021) Reusable surface amplified nanobiosensor for the sub PFU/mL level detection of airborne virus. Sci Rep 11(1):16776. https://doi.org/10.1038/s41598-021-96254-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J, Lee J, Jung JH (2020) Fully integrated optofluidic SERS platform for real-time and continuous characterization of airborne microorganisms. Biosens Bioelectron 169:112611. https://doi.org/10.1016/j.bios.2020.112611

    Article  CAS  PubMed  Google Scholar 

  22. Jing W, Zhao W, Liu S, Li L, Tsai C-T, Fan X, Wu W, Li J, Yang X, Sui G (2013) Microfluidic device for efficient airborne bacteria capture and enrichment. Anal Chem 85(10):5255–5262. https://doi.org/10.1021/ac400590c

    Article  CAS  PubMed  Google Scholar 

  23. Damit B (2017) Droplet-based microfluidics detector for bioaerosol detection. Aerosol Sci Technol 51:488–500. https://doi.org/10.1080/02786826.2016.1275515

    Article  ADS  CAS  Google Scholar 

  24. Lee SJ, Park JS, Im HT, Jung H-I (2008) A microfluidic ATP-bioluminescence sensor for the detection of airborne microbes. Sensors Actuators B Chem 132(2):443–448. https://doi.org/10.1016/j.snb.2007.10.035

    Article  CAS  Google Scholar 

  25. Lee CH, Seok H, Jang W, Kim JT, Park G, Kim H-U, Rho J, Kim T, Chung TD (2021) Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosens Bioelectron 192:113499. https://doi.org/10.1016/j.bios.2021.113499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coudron L, McDonnell MB, Munro I, McCluskey DK, Johnston ID, Tan CKL, Tracey MC (2019) Fully integrated digital microfluidics platform for automated immunoassay; a versatile tool for rapid, specific detection of a wide range of pathogens. Biosens Bioelectron 128:52–60. https://doi.org/10.1016/j.bios.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  27. Choi J, Kang M, Jung JH (2015) Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Sci Rep 5:15983. https://doi.org/10.1038/srep15983

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang X, Jing W, Zheng L, Liu S, Wu W, Sui G (2014) A continuous-flow high-throughput microfluidic device for airborne bacteria PCR detection. Lab Chip 14(4):671–676. https://doi.org/10.1039/c3lc50977j

    Article  CAS  PubMed  Google Scholar 

  29. Jiang X, Jing W, Sun X, Liu Q, Yang C, Liu S, Qin K, Sui G (2016) High-Throughput microfluidic device for LAMP analysis of airborne bacteria. ACS Sens 1(7):958–962. https://doi.org/10.1021/acssensors.6b00282

    Article  CAS  Google Scholar 

  30. Tufts JAM, Calfee MW, Lee SD, Ryan SP (2014) Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research. World J Microbiol Biotechnol 30(5):1453–1461. https://doi.org/10.1007/s11274-013-1576-x

    Article  PubMed  Google Scholar 

  31. Fuchiwaki Y, Nagai H, Saito M, Tamiya E (2011) Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure. Biosens Bioelectron 27(1):88–94. https://doi.org/10.1016/j.bios.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  32. Pfrommer E, Dreier C, Gabriel G, Dallenga T, Reimer R, Schepanski K, Scherließ R, Schaible UE, Gutsmann T (2020) Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils. Sci Rep 10(1):9159. https://doi.org/10.1038/s41598-020-65781-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma J, Jiang G, Ma Q, Wang H, Du M, Wang C, Xie X, Li T, Chen S (2022) Rapid detection of airborne protein from using a biosensor detection system. Analyst 147(4):614–624. https://doi.org/10.1039/d1an02104d

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Jing W, Jiang X, Zhao W, Liu S, Cheng X, Sui G (2014) Microfluidic platform for direct capture and analysis of airborne Mycobacterium tuberculosis. Anal Chem 86(12):5815–5821. https://doi.org/10.1021/ac500578h

    Article  CAS  PubMed  Google Scholar 

  35. Chang CW, Li SY, Huang SH, Huang CK, Chen YY, Chen CC (2013) Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities. Indoor Air 23(1):74–84. https://doi.org/10.1111/j.1600-0668.2012.00793.x

    Article  PubMed  Google Scholar 

  36. Yamaguchi N, Tokunaga Y, Goto S, Fujii Y, Banno F, Edagawa A (2017) Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system. Sci Rep 7(1):3092. https://doi.org/10.1038/s41598-017-03293-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong SC, Kang JS, Lee JE, Kim SS, Jung JH (2015) Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses. Lab Chip 15(8):1889–1897. https://doi.org/10.1039/c5lc00079c

    Article  CAS  PubMed  Google Scholar 

  38. Choi J, Hong SC, Kim W, Jung JH (2017) Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sens 2(4):513–521. https://doi.org/10.1021/acssensors.6b00753

    Article  CAS  PubMed  Google Scholar 

  39. Ma Z, Zheng Y, Cheng Y, Shuai X, Ye X, Yao M (2016) Development of an integrated microfluidic electrostatic sampler for bioaerosol. J Aerosol Sci 95:84–94. https://doi.org/10.1016/j.jaerosci.2016.01.003

    Article  ADS  CAS  Google Scholar 

  40. Moon H-S, Nam Y-W, Park JC, Jung H-I (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43(15):5857–5863. https://doi.org/10.1021/es900078z

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Stratis-Cullum DN, Griffin GD, Mobley J, Vass AA, Vo-Dinh T (2003) A miniature biochip system for detection of aerosolized Bacillus globigii spores. Anal Chem 75(2):275–280. https://doi.org/10.1021/ac026068+

    Article  CAS  PubMed  Google Scholar 

  42. Floriano PN, Christodoulides N, Romanovicz D, Bernard B, Simmons GW, Cavell M, McDevitt JT (2005) Membrane-based on-line optical analysis system for rapid detection of bacteria and spores. Biosens Bioelectron 20(10):2079–2088. https://doi.org/10.1016/j.bios.2004.08.046

    Article  CAS  PubMed  Google Scholar 

  43. Liu Q, Zhang Y, Jing W, Liu S, Zhang D, Sui G (2016) First airborne pathogen direct analysis system. Analyst 141(5):1637–1640. https://doi.org/10.1039/c5an02367j

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Jiang X, Liu Y, Liu Q, Jing W, Qin K, Sui G (2016) Rapid capture and analysis of airborne staphylococcus aureus in the hospital using a microfluidic chip. Micromachines (Basel) 7(9). https://doi.org/10.3390/mi7090169

  45. Liu Q, Zhang XL, Li XX, Liu SX, Sui GD (2018) A semi-quantitative method for point-of-care assessments of specific pathogenic bioaerosols using a portable microfluidics-based device. J Aerosol Sci 115:173–180. https://doi.org/10.1016/j.jaerosci.2017.10.010

    Article  ADS  CAS  Google Scholar 

  46. Zhang X, Xu X, Wang J, Wang C, Yan Y, Wu A, Ren Y (2021) Public-health-driven microfluidic technologies: from separation to detection. Micromachines (Basel) 12(4). https://doi.org/10.3390/mi12040391

  47. Krokhine S, Torabi H, Doostmohammadi A, Rezai P (2021) Conventional and microfluidic methods for airborne virus isolation and detection. Colloids Surf B Biointerfaces 206:111962. https://doi.org/10.1016/j.colsurfb.2021.111962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee I, Jeon E, Lee J (2023) On-site bioaerosol sampling and detection in microfluidic platforms. Trends Analyt Chem 158:116880. https://doi.org/10.1016/j.trac.2022.116880

    Article  CAS  PubMed  Google Scholar 

  49. Kabir E, Azzouz A, Raza N, Bhardwaj SK, Kim K-H, Tabatabaei M, Kukkar D (2020) Recent advances in monitoring, sampling, and sensing techniques for bioaerosols in the atmosphere. ACS Sens 5(5):1254–1267. https://doi.org/10.1021/acssensors.9b02585

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Wang L, Qi W, Liu Y, Lin J (2021) Challenges and perspectives for biosensing of bioaerosol containing pathogenic microorganisms. Micromachines (Basel) 12(7). https://doi.org/10.3390/mi12070798

  51. Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H (2022) Lab-on-a-chip platforms for airborne particulate matter applications: a review of current perspectives. Biosensors (Basel) 12(4). https://doi.org/10.3390/bios12040191

  52. Breshears LE, Nguyen BT, Mata Robles S, Wu L, Yoon J-Y (2022) Biosensor detection of airborne respiratory viruses such as SARS-CoV-2. SLAS Technol 27(1). https://doi.org/10.1016/j.slast.2021.12.004

  53. Georgakopoulos DG, Despres V, Frohlich-Nowoisky J, Psenner R, Ariya PA, Posfai M, Ahern HE, Moffett BF, Hill TCJ (2009) Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences 6(4):721–737. https://doi.org/10.5194/bg-6-721-2009

    Article  ADS  CAS  Google Scholar 

  54. Haig CW, Mackay WG, Walker JT, Williams C (2016) Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies. J Hosp Infect 93(3):242–255. https://doi.org/10.1016/j.jhin.2016.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fronczek CF, Yoon J-Y (2015) Biosensors for monitoring airborne pathogens. J Lab Autom 20(4):390–410. https://doi.org/10.1177/2211068215580935

    Article  CAS  PubMed  Google Scholar 

  56. Blais-Lecours P, Perrott P, Duchaine C (2015) Non-culturable bioaerosols in indoor settings: impact on health and molecular approaches for detection. Atmos Environ (1994) 110:45–53. https://doi.org/10.1016/j.atmosenv.2015.03.039

    Article  CAS  PubMed  Google Scholar 

  57. Gralton J, Tovey E, McLaws M-L, Rawlinson WD (2011) The role of particle size in aerosolised pathogen transmission: a review. J Infect 62(1). https://doi.org/10.1016/j.jinf.2010.11.010

  58. Alvarez AJ, Buttner MP, Stetzenbach LD (1995) PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microbiol 61(10):3639–3644. https://doi.org/10.1128/aem.61.10.3639-3644.1995

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhardwaj J, Hong S, Jang J, Han C-H, Lee J, Jang J (2021) Recent advancements in the measurement of pathogenic airborne viruses. J Hazard Mater 420:126574. https://doi.org/10.1016/j.jhazmat.2021.126574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Basiri A, Heidari A, Nadi MF, Fallahy MTP, Nezamabadi SS, Sedighi M, Saghazadeh A, Rezaei N (2021) Microfluidic devices for detection of RNA viruses. Rev Med Virol 31(1). https://doi.org/10.1002/rmv.2154

  61. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pleschka S (2013) Overview of influenza viruses. Curr Top Microbiol Immunol 370. https://doi.org/10.1007/82_2012_272

  63. La Rosa G, Fratini M, Della Libera S, Iaconelli M, Muscillo M (2013) Viral infections acquired indoors through airborne, droplet or contact transmission. Ann Ist Super Sanita 49(2):124–132. https://doi.org/10.4415/ANN_13_02_03

    Article  PubMed  Google Scholar 

  64. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28(1):134–164. https://doi.org/10.1128/CMR.00075-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S (2017) Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol 123(3):570–581. https://doi.org/10.1111/jam.13468

    Article  CAS  PubMed  Google Scholar 

  66. Leonard TE, Siratan E, Hartiadi LY, Crystalia AA (2021) Insights into antimicrobial peptides in fighting anthrax: a review. Drug Dev Res 82(6):754–766. https://doi.org/10.1002/ddr.21803

    Article  CAS  PubMed  Google Scholar 

  67. Datta KK, Singh J (2002) Anthrax. Indian J Pediatr 69(1):49–56. https://doi.org/10.1007/BF02723777

    Article  CAS  PubMed  Google Scholar 

  68. Martinez L, Verma R, Croda J, Horsburgh CR, Walter KS, Degner N, Middelkoop K, Koch A, Hermans S, Warner DF, Wood R, Cobelens F, Andrews JR (2019) Detection, survival and infectious potential of in the environment: a review of the evidence and epidemiological implications. Eur Respir J 53(6). https://doi.org/10.1183/13993003.02302-2018

  69. Patterson B, Wood R (2019) Is cough really necessary for TB transmission? Tuberculosis (Edinb) 117:31–35. https://doi.org/10.1016/j.tube.2019.05.003

    Article  PubMed  Google Scholar 

  70. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3):463–496. https://doi.org/10.1128/CMR.16.3.463-496.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200. https://doi.org/10.1093/annhyg/meg032

    Article  CAS  PubMed  Google Scholar 

  72. Burillo A, Pedro-Botet ML, Bouza E (2017) Microbiology and epidemiology of Legionnaire’s Disease. Infect Dis Clin North Am 31(1). https://doi.org/10.1016/j.idc.2016.10.002

  73. Chauhan D, Shames SR (2021) Pathogenicity and virulence of Legionella: intracellular replication and host response. Virulence 12(1):1122–1144. https://doi.org/10.1080/21505594.2021.1903199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar P, Kausar MA, Singh AB, Singh R (2021) Biological contaminants in the indoor air environment and their impacts on human health. Air Qual Atmos Health 14(11):1723–1736. https://doi.org/10.1007/s11869-021-00978-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noblitt SD, Lewis GS, Liu Y, Hering SV, Collett JL, Henry CS (2009) Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition. Anal Chem 81(24):10029–10037. https://doi.org/10.1021/ac901903m

    Article  CAS  PubMed  Google Scholar 

  76. Kim K-H, Kabir E, Jahan SA (2018) Airborne bioaerosols and their impact on human health. J Environ Sci (China) 67:23–35. https://doi.org/10.1016/j.jes.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  77. Zietsman M, Phan LT, Jones RM (2019) Potential for occupational exposures to pathogens during bronchoscopy procedures. J Occup Environ Hyg 16(10):707–716. https://doi.org/10.1080/15459624.2019.1649414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Matta I, Lagana AS, Ghabi E, Bitar L, Ayed A, Petousis S, Vitale SG, Sleiman Z (2022) COVID-19 transmission in surgical smoke during laparoscopy and open surgery: a systematic review. Minim Invasive Ther Allied Technol 31(5):690–697. https://doi.org/10.1080/13645706.2021.1982728

    Article  PubMed  Google Scholar 

  79. Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV (2019) Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 18(8):813–828. https://doi.org/10.1080/14760584.2019.1643242

    Article  CAS  PubMed  Google Scholar 

  80. Mbareche H, Brisebois E, Veillette M, Duchaine C (2017) Bioaerosol sampling and detection methods based on molecular approaches: no pain no gain. Sci Total Environ 599–600:2095–2104. https://doi.org/10.1016/j.scitotenv.2017.05.076

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Pan M, Lednicky JA, Wu C-Y (2019) Collection, particle sizing and detection of airborne viruses. J Appl Microbiol 127(6):1596–1611. https://doi.org/10.1111/jam.14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin K, Marr LC (2020) Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ Sci Technol 54(2):1024–1032. https://doi.org/10.1021/acs.est.9b04959

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Wang Z, Reponen T, Grinshpun SA, Górny RL, Willeke K (2001) Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J Aerosol Sci 32(5):661–674. https://doi.org/10.1016/S0021-8502(00)00108-7

    Article  ADS  CAS  Google Scholar 

  84. Lin W-H, Li C-S (2003) Influence of storage on the fungal concentration determination of impinger and filter samples. AIHA J (Fairfax, Va) 64(1):102–107. https://doi.org/10.1080/15428110308984798

    Article  PubMed  Google Scholar 

  85. Tseng C-C, Li C-S (2005) Collection efficiencies of aerosol samplers for virus-containing aerosols. J Aerosol Sci 36(5):593–607. https://doi.org/10.1016/j.jaerosci.2004.12.004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walker CM, Ko G (2007) Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol 41(15):5460–5465. https://doi.org/10.1021/es070056u

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Rahmani AR, Leili M, Azarian G, Poormohammadi A (2020) Sampling and detection of corona viruses in air: a mini review. Sci Total Environ 740:140207. https://doi.org/10.1016/j.scitotenv.2020.140207

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bian X, Lan Y, Wang B, Zhang YS, Liu B, Yang P, Zhang W, Qiao L (2016) Microfluidic air sampler for highly efficient bacterial aerosol collection and identification. Anal Chem 88(23):11504–11512. https://doi.org/10.1021/acs.analchem.6b02708

    Article  CAS  PubMed  Google Scholar 

  89. Caruana DJ (2011) Detection and analysis of airborne particles of biological origin: present and future. Analyst 136(22):4641–4652. https://doi.org/10.1039/c1an15506g

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Verreault D, Moineau S, Duchaine C (2008) Methods for sampling of airborne viruses. Microbiol Mol Biol Rev 72(3):413–444. https://doi.org/10.1128/MMBR.00002-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Borges JT, Nakada LYK, Maniero MG, Guimarães JR (2021) SARS-CoV-2: a systematic review of indoor air sampling for virus detection. Environ Sci Pollut Res Int 28(30):40460–40473. https://doi.org/10.1007/s11356-021-13001-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma XZ, Fang ZQ, Li FS, Hu KX (2020) Determination of performance-parameter design and impact factors of sampling efficiency for bioaerosol cyclones. Biotechnol Biotechnol Equip 34(1):640–651. https://doi.org/10.1080/13102818.2020.1797529

    Article  CAS  Google Scholar 

  93. Kim HR, An S, Hwang J (2021) High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses. J Hazard Mater 412:125219. https://doi.org/10.1016/j.jhazmat.2021.125219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim HR, An S, Hwang J (2020) Aerosol-to-hydrosol sampling and simultaneous enrichment of airborne bacteria for rapid biosensing. ACS Sens 5(9):2763–2771. https://doi.org/10.1021/acssensors.0c00555

    Article  CAS  PubMed  Google Scholar 

  95. Hogan CJ, Kettleson EM, Lee MH, Ramaswami B, Angenent LT, Biswas P (2005) Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J Appl Microbiol 99(6):1422–1434. https://doi.org/10.1111/j.1365-2672.2005.02720

    Article  PubMed  Google Scholar 

  96. Piri A, Kim HR, Park DH, Hwang J (2021) Increased survivability of coronavirus and H1N1 influenza virus under electrostatic aerosol-to-hydrosol sampling. J Hazard Mater 413:125417. https://doi.org/10.1016/j.jhazmat.2021.125417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang P, Yuan S, Yang N, Wang A, Fordjour A, Chen S (2020) The collection method for crop fungal spores based on an efficient microfluidic device. Aerosol Air Qual Res 20(1):72–79. https://doi.org/10.4209/aaqr.2019.08.0424

    Article  CAS  Google Scholar 

  98. Xu P, Zhang R, Yang N, KwabenaOppong P, Sun J, Wang P (2019) High-precision extraction and concentration detection of airborne disease microorganisms based on microfluidic chip. Biomicrofluidics 13(2):024110. https://doi.org/10.1063/1.5086087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim HR, An S, Hwang J (2020) An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus. Biosens Bioelectron 170:112656. https://doi.org/10.1016/j.bios.2020.112656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chang Y, Wang Y, Li W, Wei Z, Tang S, Chen R (2023) Mechanisms, techniques and devices of airborne virus detection: a review. Int J Environ Res Public Health 20(8). https://doi.org/10.3390/ijerph20085471

  101. Tan MM, Shen FX, Yao MS, Zhu T (2011) Development of an automated electrostatic sampler (AES) for bioaerosol detection. Aerosol Sci Technol 45(9):1154–1160. https://doi.org/10.1080/02786826.2011.582193

    Article  ADS  CAS  Google Scholar 

  102. Salian VS, Wright JA, Vedell PT, Nair S, Li C, Kandimalla M, Tang X, Carmona Porquera EM, Kalari KR, Kandimalla KK (2021) COVID-19 transmission, current treatment, and future therapeutic strategies. Mol Pharm 18(3):754–771. https://doi.org/10.1021/acs.molpharmaceut.0c00608

    Article  CAS  PubMed  Google Scholar 

  103. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, Sun L, Duan Y, Cai J, Westerdahl D, Liu X, Xu K, Ho K-F, Kan H, Fu Q, Lan K (2020) Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582(7813):557–560. https://doi.org/10.1038/s41586-020-2271-3

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Dumont-Leblond N, Veillette M, Mubareka S, Yip L, Longtin Y, Jouvet P, Paquet Bolduc B, Godbout S, Kobinger G, McGeer A, Mikszewski A, Duchaine C (2020) Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation. Emerg Microbes Infect 9(1):2597–2605. https://doi.org/10.1080/22221751.2020.1850184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheng VC-C, Wong S-C, Chan VW-M, So SY-C, Chen JH-K, Yip CC-Y, Chan K-H, Chu H, Chung TW-H, Sridhar S, To KK-W, Chan JF-W, Hung IF-N, Ho P-L, Yuen K-Y (2020) Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol 41(11):1258–1265. https://doi.org/10.1017/ice.2020.282

    Article  CAS  PubMed  Google Scholar 

  106. Jin T, Li J, Yang J, Li J, Hong F, Long H, Deng Q, Qin Y, Jiang J, Zhou X, Song Q, Pan C, Luo P (2021) SARS-CoV-2 presented in the air of an intensive care unit (ICU). Sustain Cities Soc 65:102446. https://doi.org/10.1016/j.scs.2020.102446

    Article  PubMed  Google Scholar 

  107. Cate DM, Noblitt SD, Volckens J, Henry CS (2015) Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15(13):2808–2818. https://doi.org/10.1039/c5lc00364d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bekking C, Yip L, Groulx N, Doggett N, Finn M, Mubareka S (2019) Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets. Influenza Other Respir Viruses 13(6):564–573. https://doi.org/10.1111/irv.12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, Palmer JE, Clark KE, Fisher MA, Khakoo R, Beezhold DH (2010) Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One 5(11):e15100. https://doi.org/10.1371/journal.pone.0015100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R, Meade BJ, Lander O, Davis S, Thewlis RE, Celik I, Chen BT, Beezhold DH (2009) Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis 48(4):438–440. https://doi.org/10.1086/596478

    Article  PubMed  Google Scholar 

  111. Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ (2013) Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog 9(3):e1003205. https://doi.org/10.1371/journal.ppat.1003205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pan M, Eiguren-Fernandez A, Hsieh H, Afshar-Mohajer N, Hering SV, Lednicky J, Fan ZH, Wu CY (2016) Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. J Appl Microbiol 120(3):805–815. https://doi.org/10.1111/jam.13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pardon G, Ladhani L, Sandström N, Ettori M, Lobov G, van der Wijngaart W (2015) Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface. Sensors Actuators B Chem 212:344–352. https://doi.org/10.1016/j.snb.2015.02.008

    Article  CAS  Google Scholar 

  114. Ladhani L, Pardon G, Meeuws H, van Wesenbeeck L, Schmidt K, Stuyver L, van der Wijngaart W (2017) Sampling and detection of airborne influenza virus towards point-of-care applications. PLoS One 12(3):e0174314. https://doi.org/10.1371/journal.pone.0174314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897. https://doi.org/10.1073/pnas.0704958104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gou Y, Jia Y, Wang P, Sun C (2018) Progress of inertial microfluidics in principle and application. Sensors (Basel) 18(6). https://doi.org/10.3390/s18061762

  117. Schaap A, Chu WC, Antonio MI, Stoeber B (2010) Microchannel-based size detector for airborne particles. Sensors 2010:2441–2446. https://doi.org/10.1109/ICSENS.2010.5690790. (2010 IEEE)

    Article  Google Scholar 

  118. Ng TW, Chan WL, Lai KM (2017) Importance of stress-response genes to the survival of airborne Escherichia coli under different levels of relative humidity. AMB Express 7(1):71. https://doi.org/10.1186/s13568-017-0376-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dybwad M, Skogan G (2017) Aerobiological stabilities of different species of gram-negative bacteria, including well-known biothreat simulants, in single-cell particles and cell clusters of different compositions. Appl Environ Microbiol 83(18). https://doi.org/10.1128/aem.00823-17

  120. Otero Fernandez M, Thomas RJ, Oswin H, Haddrell AE, Reid JP (2020) Transformative approach to investigate the microphysical factors influencing airborne transmission of pathogens. Appl Environ Microbiol 86(23). https://doi.org/10.1128/aem.01543-20

  121. Roux J-M, Kaspari O, Heinrich R, Hanschmann N, Grunow R (2013) Investigation of a New Electrostatic Sampler for Concentrating Biological and Non-Biological Aerosol Particles. Aerosol Sci Technol 47(5):463–471. https://doi.org/10.1080/02786826.2013.763896

    Article  ADS  CAS  Google Scholar 

  122. Clark Burton N, Adhikari A, Grinshpun SA, Hornung R, Reponen T (2005) The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J Environ Monit 7(5):475–480. https://doi.org/10.1039/b500056d

    Article  CAS  PubMed  Google Scholar 

  123. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106(31):12814–12819. https://doi.org/10.1073/pnas.0811003106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  124. Noblitt SD, Schwandner FM, Hering SV, Collett JL, Henry CS (2009) High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection. J Chromatogr A 1216(9):1503–1510. https://doi.org/10.1016/j.chroma.2008.12.084

    Article  CAS  PubMed  Google Scholar 

  125. Greenwood JD, Liu Y, Busacker DE, Cheng D, Jiang H (2010) Collection of Gaseous and aerosolized samples using microfluidic devices with gas–liquid interfaces. IEEE Sensors J 10(5):952–959. https://doi.org/10.1109/JSEN.2009.2038071

    Article  ADS  CAS  Google Scholar 

  126. Usachev EV, Agranovski IE (2012) Internally controlled PCR system for detection of airborne microorganisms. J Environ Monit 14(6):1631–1637. https://doi.org/10.1039/c2em30019b

    Article  CAS  PubMed  Google Scholar 

  127. Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol 71(11):7376–7388. https://doi.org/10.1128/AEM.71.11.7376-7388.2005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 309(1):36–43. https://doi.org/10.1016/j.jcis.2007.02.015

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Owen TW, Al-Kaysi RO, Bardeen CJ, Cheng Q (2007) Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles. Sens Actuators B Chem 126(2):691–699. https://doi.org/10.1016/j.snb.2007.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shen F, Tan M, Wang Z, Yao M, Xu Z, Wu Y, Wang J, Guo X, Zhu T (2011) Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. Environ Sci Technol 45(17):7473–7480. https://doi.org/10.1021/es1043547

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Park J-W, Kim HR, Hwang J (2016) Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay. Anal Chim Acta 941:101–107. https://doi.org/10.1016/j.aca.2016.08.039

    Article  CAS  PubMed  Google Scholar 

  132. Kaewseekhao B, Nuntawong N, Eiamchai P, Roytrakul S, Reechaipichitkul W, Faksri K (2020) Diagnosis of active tuberculosis and latent tuberculosis infection based on Raman spectroscopy and surface-enhanced Raman spectroscopy. Tuberculosis 121:101916. https://doi.org/10.1016/j.tube.2020.101916

    Article  CAS  PubMed  Google Scholar 

  133. Chen H, Das A, Bi L, Choi N, Moon J-I, Wu Y, Park S, Choo J (2020) Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria. Nanoscale 12(42):21560–21570. https://doi.org/10.1039/d0nr06340a

    Article  CAS  PubMed  Google Scholar 

  134. Jeong S-G, Wallace L, Rim D (2021) Contributions of coagulation, deposition, and ventilation to the removal of airborne nanoparticles in indoor environments. Environ Sci Technol 55(14):9730–9739. https://doi.org/10.1021/acs.est.0c08739

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Kwon H-B, Song W-Y, Lee T-H, Lee S-S, Kim Y-J (2021) Monitoring the effective density of airborne nanoparticles in real time using a microfluidic nanoparticle analysis chip. ACS Sens 6(1):137–147. https://doi.org/10.1021/acssensors.0c01986

    Article  CAS  PubMed  Google Scholar 

  136. Poenar DP (2019) Microfluidic and micromachined/MEMS devices for separation, discrimination and detection of airborne particles for pollution monitoring. Micromachines (Basel) 10(7):483. https://doi.org/10.3390/mi10070483

    Article  PubMed  Google Scholar 

  137. Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL (2018) Detecting biothreat agents: from current diagnostics to developing sensor technologies. ACS Sens 3(10):1894–2024. https://doi.org/10.1021/acssensors.8b00420

    Article  CAS  PubMed  Google Scholar 

  138. Pyankov OV, Agranovski IE, Pyankova O, Mokhonova E, Mokhonov V, Safatov AS, Khromykh AA (2007) Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ Microbiol 9(4). https://doi.org/10.1111/j.1462-2920.2006.01226.x

  139. Agranovski IE, Usachev EV (2021) In-situ rapid bioaerosol detection in the ambient air by miniature multiplex PCR utilizing technique. Atmos Environ 246. https://doi.org/10.1016/j.atmosenv.2020.118147

  140. Zhuang J, Yin J, Lv S, Wang B, Mu Y (2020) Advanced “lab-on-a-chip” to detect viruses - current challenges and future perspectives. Biosens Bioelectron 163:112291. https://doi.org/10.1016/j.bios.2020.112291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oishee MJ, Ali T, Jahan N, Khandker SS, Haq MA, Khondoker MU, Sil BK, Lugova H, Krishnapillai A, Abubakar AR, Kumar S, Haque M, Jamiruddin MR, Adnan N (2021) COVID-19 pandemic: review of contemporary and forthcoming detection tools. Infect Drug Resist 14:1049–1082. https://doi.org/10.2147/IDR.S289629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P (2020) PCR past, present and future. Biotechniques 69(4):317–325. https://doi.org/10.2144/btn-2020-0057

    Article  CAS  PubMed  Google Scholar 

  143. Xu Z, Wu Y, Shen F, Chen Q, Tan M, Yao M (2011) Bioaerosol Science, technology, and engineering: past, present, and future. Aerosol Sci Technol 45(11):1337–1349. https://doi.org/10.1080/02786826.2011.593591

    Article  ADS  CAS  Google Scholar 

  144. Hsu Y-F, Chuang C-Y, Yang S (2021) Evaluation of the bioaerosol inactivation ability of chitosan-coated antimicrobial filters. Int J Environ Res Public Health 18(13). https://doi.org/10.3390/ijerph18137183

  145. Foat TG, Sellors WJ, Walker MD, Rachwal PA, Jones JW, Despeyroux DD, Coudron L, Munro I, McCluskey DK, Tan CKL, Tracey MC (2016) A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets. J Aerosol Sci 95:43–53. https://doi.org/10.1016/j.jaerosci.2016.01.007

    Article  ADS  CAS  Google Scholar 

  146. Panahi A, Sadighbayan D, Forouhi S, Ghafar-Zadeh E (2021) Recent advances of field-effect transistor technology for infectious diseases. Biosensors (Basel) 11(4). https://doi.org/10.3390/bios11040103

  147. Lu H, Zhu J, Zhang T, Zhang X, Chen X, Zhao W, Yao Y, Zhao W, Sui G (2022) A rapid multiplex nucleic acid detection system of airborne fungi by an integrated DNA release device and microfluidic chip. Talanta 246:123467. https://doi.org/10.1016/j.talanta.2022.123467

    Article  CAS  PubMed  Google Scholar 

  148. Duarte PA, Menze L, Shoute L, Zeng J, Savchenko O, Lyu J, Chen J (2022) Highly efficient capture and quantification of the airborne fungal pathogen sclerotinia sclerotiorum employing a nanoelectrode-activated microwell array. ACS Omega 7(1):459–468. https://doi.org/10.1021/acsomega.1c04878

    Article  CAS  PubMed  Google Scholar 

  149. Jia Y, Wu W, Zheng J, Ni Z, Sun H (2019) Spatial varying profiling of air PM constituents using paper-based microfluidics. Biomicrofluidics 13(5):054103. https://doi.org/10.1063/1.5119910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS (2012) Microfluidic paper-based analytical device for particulate metals. Anal Chem 84(10):4474–4480. https://doi.org/10.1021/ac300309c

    Article  CAS  PubMed  Google Scholar 

  151. Liu Y, MacDonald DA, Yu X-Y, Hering SV, Collett JL, Henry CS (2006) Analysis of anions in ambient aerosols by microchip capillary electrophoresis. Analyst 131(11):1226–1231. https://doi.org/10.1039/b608945c

    Article  ADS  CAS  PubMed  Google Scholar 

  152. McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, Burris K, Metz T, Langlois RG, Tsang KW, Bryan R, Anderson DA, Venkateswaran KS, Milanovich FP, Colston BW (2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal Chem 75(20):5293–5299. https://doi.org/10.1021/ac034722v

    Article  CAS  PubMed  Google Scholar 

  153. Inami H, Tsuge K, Matsuzawa M, Sasaki Y, Togashi S, Komano A, Seto Y (2009) Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection. Biosens Bioelectron 24(11):3299–3305. https://doi.org/10.1016/j.bios.2009.04.025

    Article  CAS  PubMed  Google Scholar 

  154. Huang S, Connolly J, Khlystov A, Fair RB (2020) Digital microfluidics for the detection of selected inorganic ions in aerosols. Sensors (Basel) 20(5). https://doi.org/10.3390/s20051281

  155. Li X, Zhang X, Liu Q, Zhao W, Liu S, Sui G (2018) Microfluidic system for rapid detection of airborne pathogenic fungal spores. ACS Sens 3(10):2095–2103. https://doi.org/10.1021/acssensors.8b00615

    Article  CAS  PubMed  Google Scholar 

  156. Liu Q, Zhang X, Yao Y, Jing W, Liu S, Sui G (2018) A novel microfluidic module for rapid detection of airborne and waterborne pathogens. Sensors Actuators B Chem 258:1138–1145. https://doi.org/10.1016/j.snb.2017.11.113

    Article  CAS  Google Scholar 

  157. Calderón-Ezquerro MDC, Serrano-Silva N, Brunner-Mendoza C (2021) Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environ Pollut 278:116858. https://doi.org/10.1016/j.envpol.2021.116858

    Article  CAS  PubMed  Google Scholar 

  158. Yang S-M, Lv S, Zhang W, Cui Y (2022) Microfluidic point-of-care (POC) devices in early diagnosis: a review of opportunities and challenges. Sensors (Basel) 22(4). https://doi.org/10.3390/s22041620

  159. Nath P, Kabir A, Khoubafarin Doust S, Kreais ZJ, Ray A (2020) Detection of bacterial and viral pathogens using photonic point-of-care devices. Diagnostics (Basel) 10(10). https://doi.org/10.3390/diagnostics10100841

Download references

Funding

This research was funded by the project from China Post-doctoral Science Foundation (No. 2021MD703911), Natural Science Foundation of Liaoning Province of China (No. 2020-MS-166, No. 2021-MS-205), Foundation of the Education Department of Liaoning Province in China (No. QN2019035, No. JYTMS20230127, No. JYTMS20230134), and National Natural Science Foundation of China (No. 81500897).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiran Jiang, Shuo Liu, Xiaoting Sun or Huazhe Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, X., Zhao, H. et al. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols. Microchim Acta 191, 132 (2024). https://doi.org/10.1007/s00604-024-06213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06213-7

Keywords

Navigation