Skip to main content
Log in

Ti3C2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An innovative electrochemical sensor is introduced that utilizes bipolar electrochemistry on a paper substrate for detecting glucose in sweat. The sensor employs a three-dimensional porous nanocomposite (MXene/NiSm-LDH) formed by decorating nickel-samarium nanoparticles with double-layer MXene hydroxide. These specially designed electrodes exhibit exceptional electrocatalytic activity during glucose oxidation. The glucose sensing mechanism involves enzyme-free oxidation of the analyte within the sensor cell, achieved by applying an appropriate potential. This leads to the reduction of K3Fe(CN)6 in the reporter cell, and the resulting current serves as the response signal. By optimizing various parameters, the measurement platform enables the accurate determination of sweat glucose concentrations within a linear range of 10 to 200 µM. The limit of detection (LOD) for glucose is 3.6 µM (S/N = 3), indicating a sensitive and reliable detection capability. Real samples were analysed  to validate the sensor’s efficiency, and the results obtained were both promising and encouraging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tomic D, Shaw JE, Magliano DJ (2022) The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 18(9):525–539. https://doi.org/10.1038/s41574-022-00690-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Herder C, Schamarek I, Nowotny B, Carstensen-Kirberg M, Straßburger K, Nowotny P, ... Ziegler D (2017) Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart 103(1):63–70. https://doi.org/10.1136/heartjnl-2015-309181

  3. Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787. https://doi.org/10.1038/414782a

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77

    Article  Google Scholar 

  5. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P (2016) Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 79:386–397. https://doi.org/10.1016/j.bios.2015.12.055

    Article  CAS  PubMed  Google Scholar 

  7. Xue B, Li K, Feng L, Lu J, Zhang L (2017) Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim Acta 239:36–44. https://doi.org/10.1016/j.electacta.2017.04.005

    Article  CAS  Google Scholar 

  8. Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, Chen J (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron 54:251–257. https://doi.org/10.1016/j.bios.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  9. Pham XH, Ngoc Bui MP, Li CA, Han KN, Seong GH (2011) Electrochemical patterning of palladium nanoparticles on a single-walled carbon nanotube platform and its application to glucose detection. Electroanalysis 23(9):2087–2093. https://doi.org/10.1002/elan.201100046

    Article  CAS  Google Scholar 

  10. Moradi S, Firoozbakhtian A, Hosseini M, Karaman O, Kalikeri S, Raja GG, Karimi-Maleh H (2023) Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: a review. Int J Biol Macromol 127577. https://doi.org/10.1016/j.ijbiomac.2023.127577

  11. Ma X, Tang KL, Yang M, Shi W, Zhao W (2021) Metal–organic framework-derived yolk–shell hollow Ni/NiO@ C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors. J Mater Sci 56:442–456. https://doi.org/10.1007/s10853-020-05236-8

    Article  ADS  CAS  Google Scholar 

  12. Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, ... Kim H (2015) Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330. https://doi.org/10.1016/j.bios.2014.07.059

  13. Şavk A, Aydın H, Cellat K, Şen F (2020) A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J Mol Liq 300:112355. https://doi.org/10.1016/j.molliq.2019.112355

    Article  CAS  Google Scholar 

  14. Mei LP, Song P, Feng JJ, Shen JH, Wang W, Wang AJ, Weng X (2015) Nonenzymatic amperometric sensing of glucose using a glassy carbon electrode modified with a nanocomposite consisting of reduced graphene oxide decorated with Cu 2 O nanoclusters. Microchim Acta 182:1701–1708. https://doi.org/10.1007/s00604-015-1501-0

    Article  CAS  Google Scholar 

  15. Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) Assembly of Ni (OH) 2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21(42):16949–16954. https://doi.org/10.1039/C1JM11641J

    Article  CAS  Google Scholar 

  16. García-García FJ, Salazar P, Yubero F, González-Elipe AR (2016) Non-enzymatic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim Acta 201:38–44. https://doi.org/10.1016/j.electacta.2016.03.193

    Article  CAS  Google Scholar 

  17. Amin BG, Masud J, Nath M (2019) A non-enzymatic glucose sensor based on a CoNi 2 Se 4/rGO nanocomposite with ultrahigh sensitivity at low working potential. J Mater Chem B 7(14):2338–2348. https://doi.org/10.1039/C9TB00104B

    Article  CAS  PubMed  Google Scholar 

  18. Asadian E, Shahrokhian S, Zad AI (2018) Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. J Electroanal Chem 808:114–123. https://doi.org/10.1016/j.jelechem.2017.10.060

    Article  CAS  Google Scholar 

  19. Hai B, Zou Y (2015) Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors. Sens Actuators, B Chem 208:143–150. https://doi.org/10.1016/j.snb.2014.11.022

    Article  CAS  Google Scholar 

  20. Li X, Liu J, Ji X, Jiang J, Ding R, Hu Y, ... Huang X (2010) Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sensors Actuators B: Chem 147(1):241–247. https://doi.org/10.1016/j.snb.2010.03.018

  21. Li M, Fang L, Zhou H, Wu F, Lu Y, Luo H, ... Hu B (2019) Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl Surf Sci 495:143554. https://doi.org/10.1016/j.apsusc.2019.143554

  22. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2018) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119(1):120–194. https://doi.org/10.1021/acs.chemrev.8b00172

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Zhu C, Du D, Zhu J, Lin Y (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231. https://doi.org/10.1039/C5NR03398E

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Mathew M, Rout CS (2021) Electrochemical biosensors based on Ti3C2Tx MXene: future perspectives for on-site analysis. Curr Opin Electrochem 30:100782. https://doi.org/10.1016/j.coelec.2021.100782

    Article  CAS  Google Scholar 

  25. Sang X, Xie Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y, ... Unocic RR (2016) Atomic defects in monolayer titanium carbide (Ti3C2T x) MXene. ACS Nano 10(10):9193–9200. https://doi.org/10.1021/acsnano.6b05240

  26. Firoozbakhtian A, Hosseini M, Guan Y, Xu G (2023) Boosting electrochemiluminescence immunoassay sensitivity via Co–Pt nanoparticles within a Ti3C2 MXene-modified single electrode electrochemical system on raspberry pi. Anal Chem 95(40):15110–15117. https://doi.org/10.1021/acs.analchem.3c03285

    Article  CAS  PubMed  Google Scholar 

  27. Wang CM, Hsieh CH, Chen CY, Liao WS (2018) Low-voltage driven portable paper bipolar electrode-supported electrochemical sensing device. Anal Chim Acta 1015:1–7. https://doi.org/10.1016/j.aca.2018.02.041

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Fakhruddin SMB, Ino K, Inoue KY, Nashimoto Y, Shiku H (2022) Bipolar electrode-based electrochromic devices for analytical applications–a review. Electroanalysis 34(2):212–226. https://doi.org/10.1002/elan.202100153

    Article  CAS  Google Scholar 

  29. Renault C, Scida K, Knust KN, Fosdick SE, Crooks RM (2013) Paper-based bipolar electrochemistry. J Electrochem Sci Technol 4(4):146–152. https://doi.org/10.5229/JECST.2013.4.4.146

    Article  CAS  Google Scholar 

  30. Bouffier L, Zigah D, Sojic N, Kuhn A (2021) Bipolar (bio) electroanalysis. Annu Rev Anal Chem 14:65–86. https://doi.org/10.1146/annurev-anchem-090820-093307

    Article  CAS  Google Scholar 

  31. Eßmann V, Jambrec D, Kuhn A, Schuhmann W (2015) Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry. Electrochem Commun 50:77–80. https://doi.org/10.1016/j.elecom.2014.11.015

    Article  CAS  Google Scholar 

  32. Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME (2015) Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. Sensors 15(4):8787–8831. https://doi.org/10.3390/s150408787

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu W, Li S, Hu S, Yu W, Zhou Y (2021) Effect of Ti 3 AlC 2 precursor and processing conditions on microwave absorption performance of resultant Ti 3 C 2 T x MXene. J Mater Sci 56:9287–9301. https://doi.org/10.1007/s10853-021-05878-2

    Article  ADS  CAS  Google Scholar 

  34. Gilnezhad J, Firoozbakhtian A, Hosseini M, Adel S, Xu G, Ganjali MR (2023) An enzyme-free Ti3C2/Ni/Sm-LDH-based screen-printed-electrode for real-time sweat detection of glucose. Anal Chim Acta 1250:340981. https://doi.org/10.1016/j.aca.2023.340981

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Zhang C, Xing D (2016) based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: a handheld ECL system for biochemical analysis at the point-of-care level. Sens Actuators, B Chem 237:308–317. https://doi.org/10.1016/j.snb.2016.06.105

    Article  CAS  Google Scholar 

  36. Crooks RM (2016) Principles of bipolar electrochemistry. ChemElectroChem 3(3):357–359. https://doi.org/10.1002/celc.201500549

    Article  MathSciNet  CAS  Google Scholar 

  37. Fosdick SE, Knust KN, Scida K, Crooks RM (2013) Bipolar electrochemistry. Angew Chem Int Ed 52(40):10438–10456. https://doi.org/10.1002/anie.201300947

    Article  CAS  Google Scholar 

  38. Mavre F, Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM (2010) Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. https://doi.org/10.1021/ac101262v

  39. Liu M, Liu R, Wang D, Liu C, Zhang C (2016) A low-cost, ultraflexible cloth-based microfluidic device for wireless electrochemiluminescence application. Lab Chip 16(15):2860–2870. https://doi.org/10.1039/C6LC00289G

    Article  CAS  PubMed  Google Scholar 

  40. Guerrette JP, Oja SM, Zhang B (2012) Coupled electrochemical reactions at bipolar microelectrodes and nanoelectrodes. Anal Chem 84(3):1609–1616. https://doi.org/10.1021/ac2028672

    Article  CAS  PubMed  Google Scholar 

  41. Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, ... Xu G (2021) Rational design of electrochemiluminescent devices. Acc Chem Res 54(14):2936–2945. https://doi.org/10.1021/acs.accounts.1c00230

  42. Bao H, Du M, Wang H, Wang K, Zuo X, Liu F, ... Liu S (2021) Samarium‐doped nickel oxide for superior inverted perovskite solar cells: insight into doping effect for electronic applications. Adv Funct Mater 31(34):2102452. https://doi.org/10.1002/adfm.202102452

  43. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens Bioelectron 75:15–22. https://doi.org/10.1016/j.bios.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  44. Chaichi MJ, Ehsani M (2016) A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sens Actuators, B Chem 223:713–722. https://doi.org/10.1016/j.snb.2015.09.125

    Article  CAS  Google Scholar 

  45. Haiyya M, Rewatkar P, Salve M, Pattnaik PK, Goel S (2020) Miniaturized electrochemiluminescence platform with laser-induced graphene electrodes for multiple biosensing. IEEE Trans NanoBioscience 20(1):79–85. https://doi.org/10.1109/TNB.2020.3036642

    Article  Google Scholar 

  46. Liu M, Wang D, Liu C, Liu R, Li H, Zhang C (2017) Battery-triggered open wireless electrochemiluminescence in a microfluidic cloth-based bipolar device. Sens Actuators, B Chem 246:327–335. https://doi.org/10.1016/j.snb.2017.02.076

    Article  CAS  Google Scholar 

  47. Rafatmah E, Hemmateenejad B (2019) Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry. Microchim Acta 186:1–9. https://doi.org/10.1007/s00604-019-3793-y

    Article  CAS  Google Scholar 

  48. Oh C, Park B, Sundaresan V, Schaefer JL, Bohn PW (2022) Closed bipolar electrode-enabled electrochromic sensing of multiple metabolites in whole blood. ACS Sensors 8(1):270–279. https://doi.org/10.1021/acssensors.2c02140

    Article  CAS  PubMed  Google Scholar 

  49. Liu C, Wang D, Zhang C (2018) A novel paperfluidic closed bipolar electrode-electrochemiluminescence sensing platform: potential for multiplex detection at crossing-channel closed bipolar electrodes. Sens Actuators, B Chem 270:341–352. https://doi.org/10.1016/j.snb.2018.04.180

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the University of Tehran for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Damirchi: formal analysis, visualization, data curation, writing—original draft and review and editing; Ali Firoozbakhtian: conceptualization, methodology, designing the analysis, writing—review and editing; Morteza Hosseini: conceptualization, methodology, project administration, funding acquisition, writing—review and editing; Mohammad Reza Ganjali: project administration, writing—review and editing.

Corresponding authors

Correspondence to Morteza Hosseini or Mohammad Reza Ganjali.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damirchi, Z., Firoozbakhtian, A., Hosseini, M. et al. Ti3C2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry. Microchim Acta 191, 137 (2024). https://doi.org/10.1007/s00604-024-06209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06209-3

Keywords

Navigation