Skip to main content
Log in

A direct electrochemical sensor based on covalent organic frameworks/platinum nanoparticles for the detection of ofloxacin in water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A direct electrochemical sensor based on covalent organic frameworks (COFs)/platinum nanoparticles (PtNPs) composite was fabricated for the detection of ofloxacin (OFX) in water. Firstly, the COF material was synthesized via the condensation reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthalaldehyde (TPA) and integrated with PtNPs by in situ reduction. Then, TAPB-TPA-COFs/PtNPs composite was loaded onto the surface of the glassy carbon electrode (GCE) by drip coating to construct the working electrode (TAPB-TPA-COFs/PtNPs/GCE). The electrochemical performance of TAPB-TPA-COFs/PtNPs/GCE showed a significant improvement compared with that of TAPB-TPA-COFs/GCE, leading to a 3.2-fold increase in the electrochemical signal for 0.01 mM OFX. Under optimal conditions, the TAPB-TPA-COFs/PtNPs/GCE exhibited a wide linear range of 9.901 × 10−3–1.406 µM and 2.024–15.19 µM with a detection limit of 2.184 × 10−3 µM. The TAPB-TPA-COFs/PtNPs/GCE-based electrochemical sensor with excellent performance provides great potential for the rapid and trace detection of residual OFX.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Liao D, Wang R, Zheng Y, Ma J, Sun J, Yang Q, Zhou G (2023) In-situ growth of small-size Fe3O4 nanoparticles on N-doped hollow carbon spheres for electrochemical high-efficiency determination of ofloxacin-contaminated water. Microchem J 191:108927

    CAS  Google Scholar 

  2. Elfiky M, Salahuddin N, Hassanein A, Matsuda A, Hattori T (2019) Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem J 146:170–177

    CAS  Google Scholar 

  3. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van Vlierberghe S, Blust R, Strehlitz B, De Wael K (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensor Actuat B-Chem 240:1024–1035

    CAS  Google Scholar 

  4. Chen P, Blaney L, Cagnetta G, Huang J, Wang B, Wang Y, Deng S, Yu G (2019) Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environ Sci Technol 53:1564–1575

    ADS  CAS  PubMed  Google Scholar 

  5. Dong H, Yuan X, Wang W, Qiang Z (2016) Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study. J Environ Manage 178:11–19

    CAS  PubMed  Google Scholar 

  6. Pavithra KG, Senthil Kumar P, Sundar Rajan P, Saravanan A, Naushad M (2017) Sources and impacts of pharmaceutical components in wastewater and its treatment process: a review. Korean J Chem Eng 34:2787–2805

    CAS  Google Scholar 

  7. Taherizadeh M, Jahani S, Moradalizadeh M, Foroughi MM (2023) Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 255:124216

    CAS  PubMed  Google Scholar 

  8. Liu Z, Wang Q, Xue Q, Chang C, Wang R, Liu Y, Xie H (2023) Highly efficient detection of ofloxacin in water by samarium oxide and β-cyclodextrin-modified laser-induced graphene electrode. Microchem J 186:108353

    CAS  Google Scholar 

  9. Maia AS, Paiga P, Delerue-Matos C, Castro PML, Tiritan ME (2020) Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ Pollut 259:113927

    CAS  PubMed  Google Scholar 

  10. Yuan M, Xiong Q, Zhang G, Xiong Z, Liu D, Duan H, Lai W (2020) Silver nanoprism-based plasmonic ELISA for sensitive detection of fluoroquinolones. J Mater Chem B 8:3667–3675

    CAS  PubMed  Google Scholar 

  11. Lahouidak S, Soriano ML, Salghi R, Zougagh M, Rios A (2019) Graphene quantum dots for enhancement of fluorimetric detection coupled to capillary electrophoresis for detection of ofloxacin. Electrophoresis 40:2336–2341

    CAS  PubMed  Google Scholar 

  12. Vakh C, Likanov G, Bulatov A (2021) Stir flat sheet membrane liquid phase microextraction for the selective chemiluminescence determination of ofloxacin and fleroxacin in human urine. Microchem J 163:105913

    CAS  Google Scholar 

  13. Zhou X, Wang L, Shen G, Zhang D, Xie J, Mamut A, Huang W, Zhou S (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185:355–363

    Google Scholar 

  14. Koventhan C, Vinothkumar V, Chen S-M, Sangili A (2020) Highly sensitive electrode materials for the voltammetric determination of nitrofurantoin based on zinc cobaltate nanosheets. New J Chem 44:12036–12047

    CAS  Google Scholar 

  15. Kokulnathan T, Wang T-J (2019) Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: an efficient catalyst for the electrochemical detection of nitrofurantoin. Compos Part B-Eng 174:10914

    Google Scholar 

  16. Baig N, Waheed A, Sajid M, Khan I, Kawde A-N, Sohail M (2021) Porous graphene-based electrodes: advances in electrochemical sensing of environmental contaminants. Trends Environ Anal 30:e00120

    CAS  Google Scholar 

  17. Zhao G, Wang T, Li L, Tang Y, Qin Q, Wu C (2021) Heteroatoms doped yolk-shell hierarchically porous carbon derived from ZIF-8 for electrochemical sensing. Carbon 183:291–300

    CAS  Google Scholar 

  18. Ballur Prasanna S, Sakthivel R, Lin L-Y, Duann Y-F, He J-H, Liu T-Y, Chung R-J (2023) MOF derived 2D-flake-like structured Mn3Co3O4 integrated acid functionalized MWCNT for electrochemical detection of antibiotic furazolidone in biological fluids. Appl Surf Sci 611:155784

    CAS  Google Scholar 

  19. Song Z, Song J, Gao F, Chen X, Wang Q, Zhao Y, Huang X, Yang C, Wang Q (2022) Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of Cardiac Troponin I. Sensor Actuat B-Chem 368:132205

    CAS  Google Scholar 

  20. Guo L-L, Wang Y-Y, Pang Y-H, Shen X-F, Yang N-C, Ma Y, Zhang Y (2021) In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1. J Electroanal Chem 881:114931

    CAS  Google Scholar 

  21. Luo Y, Yang Y, Wang L, Wang L, Chen S (2022) An ultrafine ZnO/ZnNi2O4@porous carbon@covalent-organic framework for electrochemical detection of paracetamol and tert-butyl hydroquinone. J Alloy Compd 906:164369

    CAS  Google Scholar 

  22. Dong J, Han X, Liu Y, Li H, Cui Y (2020) Metal-covalent organic frameworks (MCOFs): a bridge between metal-organic frameworks and covalent organic frameworks. Angew Chem Int Edit 59:13722–13733

    CAS  Google Scholar 

  23. Zha X, Sun X, Chu H, Wang Y (2022) Synthesis of bimetallic covalent organic framework nanocomposite for enhanced electrochemical detection of gallic acid. Colloid Surface A 651:129748

    CAS  Google Scholar 

  24. Lin CY, Zhang D, Zhao Z, Xia Z (2018) Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater 30:1703646

    Google Scholar 

  25. Zhang Y, Liao W, Dai Y, Wang W, Wang A (2020) Covalent organic framework Schiff base network-1-based pipette tip solid phase extraction of sulfonamides from milk and honey. J Chromatogr A 1634:461665

    CAS  PubMed  Google Scholar 

  26. Xie Y, Chen Y, Sun X, Wang Y, Wang Y (2021) Conducting polymer engineered covalent organic framework as a novel electrochemical amplifier for ultrasensitive detection of acetaminophen. Chinese Chem Lett 32:2061–2065

    CAS  Google Scholar 

  27. Wang Q, Wang H, Wang L, Bai L, Yang C, Zhu T (2021) Porous graphene oxide functionalized by covalent organic framework for the application in adsorption and electrochemical: the effect of C-F bonds to structure. Microchem J 170:106710

    CAS  Google Scholar 

  28. Wang M, Guo H, Xue R, Guan Q, Zhang J, Zhang T, Sun L, Yang F, Yang W (2021) A novel electrochemical sensor based on MWCNTs-COOH/metal-covalent organic frameworks (MCOFs)/Co NPs for highly sensitive determination of DNA base. Microchem J 167:106336

    CAS  Google Scholar 

  29. Kokulnathan T, Sharma TSK, Chen S-M, Chen T-W, Dinesh B (2018) Ex-situ decoration of graphene oxide with palladium nanoparticles for the highly sensitive and selective electrochemical determination of chloramphenicol in food and biological samples. J Taiwan Inst Chem E 89:26–38

    CAS  Google Scholar 

  30. Palisoc S, De Leon PG, Alzona A, Racines L, Natividad M (2019) Highly sensitive determination of tetracycline in chicken meat and eggs using AuNP/ MWCNT-modified glassy carbon electrodes. Heliyon 5:e02147

    PubMed  PubMed Central  Google Scholar 

  31. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471

    CAS  Google Scholar 

  32. Mehmandoust M, Erk N, Karaman O, Karimi F, Bijad M, Karaman C (2021) Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem Toxicol 158:112698

    CAS  PubMed  Google Scholar 

  33. Chen L, He Y, Lei Z, Gao C, Xie Q, Tong P, Lin Z (2018) Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample. Talanta 181:296–304

    CAS  PubMed  Google Scholar 

  34. Shi X, Yao Y, Xu Y, Liu K, Zhu G, Chi L, Lu G (2017) Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl Mater Interfaces 9:7481–7488

    CAS  PubMed  Google Scholar 

  35. Lin Y, Deng Y, Wang M, Zhou T, Wang L, Ma J, Yang J (2023) DNA-functionalized covalent organic framework capsules for analysis of exosomes. Talanta 253:124043

    CAS  Google Scholar 

  36. He N, Zhu X, Liu F, Yu R, Xue Z, Liu X (2022) Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem Eng J 445:136543

    CAS  Google Scholar 

  37. Yang Y, Shi Z, Wang X, Bai B, Qin S, Li J, Jing X, Tian Y, Fang G (2022) Portable and on-site electrochemical sensor based on surface molecularly imprinted magnetic covalent organic framework for the rapid detection of tetracycline in food. Food Chem 395:133532

    CAS  PubMed  Google Scholar 

  38. Xie Y, Zhang T, Chen Y, Wang Y, Wang L (2020) Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin. Talanta 213:120843

    CAS  PubMed  Google Scholar 

  39. Deng ZH, Wang X, Wang XL, Gao CL, Dong L, Wang ML, Zhao RS (2019) A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC. Microchim Acta 186:108–116

    Google Scholar 

  40. Ru J, Wang X, Zhao J, Yang J, Zhou Z, Du X, Lu X (2022) Evaluation and development of GO/UiO-67@PtNPs nanohybrid-based electrochemical sensor for invisible arsenic (III) in water samples. Microchem J 181:107765

    CAS  Google Scholar 

  41. Zhao S, Zhang Y, Ding S, Fan J, Luo Z, Liu K, Shi Q, Liu W, Zang G (2019) A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J Electroanal Chem 834:33–42

    CAS  Google Scholar 

  42. Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J (2017) A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 91:892–899

    CAS  PubMed  Google Scholar 

  43. Sanjay BP, Sandeep S, Santhosh AS, Karthik CS, Varun DN, Kumara Swamy N, Mallu P, Nithin KS, Rajabathar JR, Muthusamy K (2022) Unprecedented 2D GNR-CoB nanocomposite for detection and degradation of malachite green - a computational prediction of degradation pathway and toxicity. Chemosphere 287:132153

    CAS  PubMed  Google Scholar 

  44. Liu T, Xue Q, Jia J, Liu F, Zou S, Tang R, Chen T, Li J, Qian Y (2019) New insights into the effect of pH on the mechanism of ofloxacin electrochemical detection in aqueous solution. Phys Chem Chem Phys 21:16282–16287

    CAS  PubMed  Google Scholar 

  45. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Electroanalytical Chemistry and Interracial Electrochemistry 52:355–393

    CAS  Google Scholar 

  46. Jiang Z, Liu Q, Tang Y, Zhang M (2017) Electrochemical sensor based on a novel Pt−Au bimetallic nanoclusters decorated on reduced graphene oxide for sensitive detection of ofloxacin. Electroanalysis 29:602–608

    CAS  Google Scholar 

  47. Manjula N, Chen T-W, Chen S-M, Lou B-S (2021) Facile synthesis of hexagonal-shaped zinc doped cobalt oxide: application for electroanalytical determination of antibacterial drug ofloxacin in urine samples. J Electroanal Chem 885:127129

    Google Scholar 

  48. Santos AM, Wong A, Vicentini FC, Fatibello-Filho O (2019) Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and beta-cyclodextrin. Microchim Acta 186:174–182

    Google Scholar 

  49. Manjula N, Pulikkutty S, Chen T-W, Chen S-M, Liu X (2021) Hexagon prism-shaped cerium ferrite embedded on GC electrode for electrochemical detection of antibiotic drug ofloxacin in biological sample. Colloid Surfaces A 627:127129

    CAS  Google Scholar 

  50. Si X, Wei Y, Wang C, Li L, Ding Y (2018) A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film. Anal Methods UK 10:1961–1967

    CAS  Google Scholar 

  51. Feng L, Xue Q, Liu F, Cao Q, Feng J, Yang L, Zhang F (2020) Voltammetric determination of ofloxacin by using a laser-modified carbon glassy electrode. Mikrochim Acta 187:86

    CAS  PubMed  Google Scholar 

  52. Luan F, Wang Y, Zhang S, Zhuang X, Tian C, Fu X, Chen L (2020) Facile synthesis of a cyclodextrin-metal organic framework decorated with Ketjen Black and platinum nanoparticles and its application in the electrochemical detection of ofloxacin. Analyst 145:1943–1949

    ADS  CAS  PubMed  Google Scholar 

  53. Wu F, Xu F, Chen L, Jiang B, Sun W, Wei X (2016) Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. Chem Res Chinese U 32:468–473

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Second Tibetan Plateau Scientific Expedition, Research Program (STEP) (No. 2019QZKK020107 and 2019QZKK020107-2) and Sichuan Science and Technology Program (No. 2022YFQ0050), the Opening Research Foundation of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affair (No. 2020CC004), the Key Laboratory of Medicinal and Edible Plant Resources Development of Sichuan Education Department (No. 10Y202103), and the Introduction of Talent Research Start-Up Fund of Chengdu University (No. 2081920038).

Author information

Authors and Affiliations

Authors

Contributions

Juan Hao: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Data curation, Writing—original draft. Lijuan Huang: Formal analysis, Investigation, Writing—original draft. Li Zhen: Data curation, Writing—review & editing. Qinghui Wang: Formal analysis, Investigation, Writing—review & editing. Zhihang Yin: Writing—review & editing. Huiming Li: Writing—review & editing. Lingpu Jia: Writing—review & editing. Wenlong Liao: Supervision, Writing—review & editing. Kunping Liu: Writing—review & editing, Project administration. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lingpu Jia, Wenlong Liao or Kunping Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9380 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Huang, L., Zheng, L. et al. A direct electrochemical sensor based on covalent organic frameworks/platinum nanoparticles for the detection of ofloxacin in water. Microchim Acta 191, 145 (2024). https://doi.org/10.1007/s00604-024-06205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06205-7

Keywords

Navigation