Skip to main content
Log in

Methylene blue-assisted molecularly-imprinted film modified nitrogen and sulfur co-doped molybdenum carbide for simultaneous electrochemical determination of two hepatotoxic drugs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor with a dual-template molecular imprinting technology was fabricated for the simultaneous detection of paracetamol (PAR) and isoniazid (INZ). The sensor was constructed using nitrogen and sulfur co-doped molybdenum carbide (N, S@Mo2C) and a thin layer of electro-polymerized methylene blue was applied onto the surface of the N, S@Mo2C. The electrochemical sensor demonstrated remarkable analytical efficiency for the concurrent PAR and INZ quantification under optimal circumstances. The system achieved an exceptionally low limit of detection (S/N = 3) of  3.7 nM for PAR, with a concentration range  of  0.013 and 140 µM.  A LOD of 7.6 nM was attained for INZ, with a linear range  between 0.025 and 140 µM. Furthermore, the platform’s selectivity was evaluated using differential pulse voltammetry  (DPV). The designed platform successfully detected PAR and INZ in authentic samples with recoveries varying between 98.3% and 104.9%. The relative standard deviations (RSD) for these measurements ranged from 2.7 to 4.0%, demonstrating that the proposed sensor is extremely stable, repeatable, and reproducible. These promising results suggest that the sensor holds potential for the detection of various (bio) molecules, paving the way for future applications in sensing fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Tujios S, Fontana RJ (2011) Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 8:202–211. https://doi.org/10.1038/nrgastro.2011.22

    Article  CAS  PubMed  Google Scholar 

  2. Lee M (2013) Drug-induced acute liver failure (2013). Clin Liver Dis 17:575–586. https://doi.org/10.1016/j.cld.2013.07.001

    Article  PubMed  Google Scholar 

  3. Anuar NS, Basirun WJ, Ladan M, Shalauddin M, Mehmood MS (2018) Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens Actuat B Chem 266:375–383. https://doi.org/10.1016/j.snb.2018.03.138

    Article  CAS  Google Scholar 

  4. Adhikari BR, Govindhan M, Chen A (2015) Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim Acta 162:198–204. https://doi.org/10.1016/j.electacta.2014.10.028

    Article  CAS  Google Scholar 

  5. Rumack B, Heard K, Green J, Albert D, Bucher-Bartelson B, Bodmer M, Sivilotti MLA, Dart RC (2012) Effect of therapeutic doses of acetaminophen (up to 4 g/day) on serum alanine aminotransferase levels in subjects consuming ethanol: systematic review and meta-analysis of randomized controlled trials. Pharmacotherap 32(9):784–791. https://doi.org/10.1002/j.1875-9114.2012.01122.x

    Article  CAS  Google Scholar 

  6. Byrd RB, Nelson R, Elliott RC (1972) Isoniazid Toxicity: a prospective study in secondary Chemoprophylaxis. J Am Med Assoc 220(11):1471–1473. https://doi.org/10.1001/jama.1972.03200110051009

    Article  CAS  Google Scholar 

  7. Nolan CM, Goldberg SV, Buskin SE (1999) Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. J Am Med Assoc 281(11):1014–1018. https://doi.org/10.1001/jama.281.11.1014

    Article  CAS  Google Scholar 

  8. Epstein MM, Nelson SD, Slattery JT, Kalhorn TF, Wall RA, Wright JM (1991) Inhibition of the metabolism of Paracetamol by isoniazid. Br J Clin Pharmacol 31(2):139–142. https://doi.org/10.1111/j.1365-2125.1991.tb05501.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdallah NA, Tolba MM, El-Brashy AM, Ibrahim FA, Fathy ME (2023) Hydro-organic mobile phase and factorial design application to attain green HPLC method for simultaneous assay of Paracetamol and dantrolene sodium in combined capsules. BMC Chem 17:92. https://doi.org/10.1186/s13065-023-00990-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bozorg BD, Goodarzi A, Fahimi F, Tabarsi P, Shahsavari N, Kobarfard F, Dastan F (2019) Simultaneous determination of Isoniazid, Pyrazinamide and Rifampin in Human plasma by high-performance liquid chromatography and UV detection. Iran J Pharm Res 18(4):1735–1741. https://doi.org/10.22037/ijpr.2019.1100849

    Article  CAS  Google Scholar 

  11. Barfield M, Spooner N, Lad R, Parry S, Fowles S (2008) Application of dried blood spots combined with HPLC-MS/MS for the quantification of acetaminophen in toxicokinetic studies. J Chromatogr B 870:32–37. https://doi.org/10.1016/j.jchromb.2008.05.025

    Article  CAS  Google Scholar 

  12. Fang P, Cai H, Li H, Zhu R, Tan Q, Gao W, Xu P, Liu Y, Zhang W, Chen Y, Zhang F (2010) Simultaneous determination of isoniazid, rifampicin, levofloxacin in mouse tissues and plasma by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 878:2286–2291. https://doi.org/10.1016/j.jchromb.2010.06.038

    Article  CAS  Google Scholar 

  13. Glavanović S, Glavanović M, Tomišić V (2016) Simultaneous quantitative determination of Paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods. Spectrochim Acta Part A: Mol Biomol Spectr 157:258–264. https://doi.org/10.1016/j.saa.2015.12.020

    Article  ADS  CAS  Google Scholar 

  14. Yu J, Sun Q, Sun J, Wang X, Niu N, Chen L (2023) Development of gold nanoparticles composite functionalized bimetallic metal-organic framework nanozymes and integrated smartphone to detection isoniazid. Sens Actuat B: Chem 390:134024. https://doi.org/10.1016/j.snb.2023.134024

    Article  CAS  Google Scholar 

  15. Mahmoud AM, Mahnashi MH, El-Wekil MM (2021) Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: application to different water samples. Talanta 221:121562. https://doi.org/10.1016/j.talanta.2020.121562

    Article  CAS  PubMed  Google Scholar 

  16. Mahmoud AM, Alkahtani SA, Alyami BA, El-Wekil MM (2020) Dual-recognition molecularly imprinted aptasensor based on gold nanoparticles decorated carboxylated carbon nanotubes for highly selective and sensitive determination of histamine in different matrices. Anal Chim Acta 1133:58–65. https://doi.org/10.1016/j.aca.2020.08.001

    Article  CAS  PubMed  Google Scholar 

  17. Mahnashi MH, Mahmoud, Alhazzani AMK, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM (2021) Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@Cu MOF as a signal enhancer and reporter nanohybrid. Microchem Acta 188:124. https://doi.org/10.1007/s00604-021-04781-6

    Article  CAS  Google Scholar 

  18. Mahmoud AM, El-Wekil MM, Mahnashi MH, Ali MFB, Alkahtani SA (2019) Modification of N, S co-doped graphene quantum dots with p-aminothiophenol-functionalized gold nanoparticles for molecular imprint-based voltammetric determination of the antiviral drug sofosbuvir. Microchim Acta 186:617. https://doi.org/10.1007/s00604-019-3647-7

    Article  CAS  Google Scholar 

  19. Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:666–672. https://doi.org/10.1016/j.electacta.2009.08.065

    Article  CAS  Google Scholar 

  20. Zhang Y, Jiang X, Zhang J, Zhang H, Li Y (2019) Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 130:315–321. https://doi.org/10.1016/j.bios.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  21. Liang W, Ren H, Li Y, Qiu H, Ye BC (2020) A robust electrochemical sensing based on bimetallic metal-organic framework mediated Mo2C for simultaneous determination of acetaminophen and isoniazid. Anal Chim Acta 1136:99–105. https://doi.org/10.1016/j.aca.2020.08.044

    Article  CAS  PubMed  Google Scholar 

  22. Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X (2012) A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection. Analyst 137:3644–3652. https://doi.org/10.1039/C2AN35499C

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) A highly sensitive method for determination of Paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

  24. El-Wekil MM, Mahmoud AM, Alkahtani SA, Marzouk AA, Ali R (2018) A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study. Biosens Bioelectron 109(2018):164–170. https://doi.org/10.1016/j.bios.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoud AM, Mahnashi MH, Alkahtani SA, El-Wekil MM (2020) Nitrogen and sulfur co-doped graphene quantum dots/nanocellulose nanohybrid for electrochemical sensing of anti-schizophrenic drug olanzapine in pharmaceuticals and human biological fluids. Inter J Biol Macromol 165(Part B):2030–2037. https://doi.org/10.1016/j.ijbiomac.2020.10.084

    Article  CAS  Google Scholar 

  26. Ren HL, Wang JJ, Feng HH, Li YC, Ye BC (2019) A versatile ratiometric electrochemical sensing platform based on N-Mo2C for detection of m-nitrophenol. Biosens Bioelectron 144:111663. https://doi.org/10.1016/j.bios.2019.111663

    Article  CAS  PubMed  Google Scholar 

  27. Zhu L, Liu XX, Yang J, He YC, Li YC (2020) Application of multiplex microfluidic electrochemical sensors in monitoring hematological tumor biomarkers. Anal Chem 92(17):11981–11986. https://doi.org/10.1021/acs.analchem.0c02430

    Article  CAS  PubMed  Google Scholar 

  28. Vilian ATE, Umapathi R, Hwang SK, Huh YS, Han YK (2021) Pd–Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J Hazard Mater 408:124914. https://doi.org/10.1016/j.jhazmat.2020.124914

    Article  CAS  PubMed  Google Scholar 

  29. Li B, Liu LH, Song HY, Deng ZP, Huo LH, Gao S (2020) Carbon-doping mesoporous β-Mo2C aggregates for nanomolar electrochemical detection of hydrogen peroxide. ACS Appl Nano Mater 3(8):7499–7507. https://doi.org/10.1021/acsanm.0c01106

    Article  CAS  Google Scholar 

  30. Alanazi AZ, Alhazzani K, Alaseem AM, Alanzi AR, Al Awadh SA, Alenazi FS, Obaidullah AJ, El-Wekil MM (2023) A molecularly imprinted electrochemical sensor for specific and ultrasensitive determination of an aminoglycoside drug: the role of copper ions in the determination. Analyst 148:2170–2179. https://doi.org/10.1039/d3an00251a

    Article  ADS  CAS  Google Scholar 

  31. Mahmoud AM, Abu-Alrub SS, Al-Qarni AO, Alshareef FM, El-Wekil MM (2023) Coordinated molecularly imprinted-based ratiometric sensor for electrochemical sensing of hazardous ciprofloxacin based on nitrogen and sulfur co-doped porous carbon/silver nanoparticles hybrid. Microchem J 193:109083. https://doi.org/10.1016/j.microc.2023.109083

    Article  CAS  Google Scholar 

  32. Mahmoud AM, Mahnashi MH, El-Wekil MM (2023) Ratiometric sensing interface for glutathione determination based on electro-polymerized copper-coordinated molecularly imprinted layer supported on silver/porous carbon hybrid. Anal Chim Acta 1272:341498. https://doi.org/10.1016/j.aca.2023.341498

    Article  CAS  PubMed  Google Scholar 

  33. Ali R, El-Wekil MM (2023) Construction of MIP/Bi2S3 nanoparticles/rGO nanoprobe for simultaneous electrochemical determination of Amoxicillin and clavulanic acid. J Alloys Compounds 962:171180. https://doi.org/10.1016/j.jallcom.2023.171180

    Article  CAS  Google Scholar 

  34. El-Wekil MM, Halby HM, Darweesh M, Ali ME, Ali R (2022) An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci Rep 12:12502. https://doi.org/10.1038/s41598-022-15637-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Wekil MM, Hayallah AM, Abdelgawad MA, Abourehab MAS, Shahin RY (2022) Nanocomposite of gold nanoparticles@nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J Electroanal Chem 922:116745. https://doi.org/10.1016/j.jelechem.2022.116745

    Article  CAS  Google Scholar 

  36. Gan T, Li J, Xu L, Guo S, Zhao A, Sun J (2020) Multishell Au@Ag@SiO2 nanorods embedded into a molecularly imprinted polymer as electrochemical sensing platform for quantification of theobromine. Microchem Acta 187:291. https://doi.org/10.1007/s00604-020-04288-6

    Article  CAS  Google Scholar 

  37. Liu X, Chen L, Gao Y, Li J, Sun J, Gan T (2022) Molecularly imprinted polymer capped Au@HKUST – 1 nanocapsules-based electrochemical sensing platform for monitoring isoproturon herbicide in water at sub – nanomole level. J Environ Chem Eng 10:107661. https://doi.org/10.1016/j.jece.2022.107661

    Article  CAS  Google Scholar 

  38. Gan T, Li J, Zhao A, Xu J, Zheng D, Wang H, Liu Y (2018) Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem 268:1–8. https://doi.org/10.1016/j.foodchem.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  39. Mohamed FA, Khashaba PY, El-Wekil MM, Shahin RY (2019) Fabrication of water compatible and biodegradable super-paramagnetic molecularly imprinted nanoparticles for selective separation of memantine from human serum prior to its quantification: an efficient and green pathway. Inter Biol Macromol 140:140–148. https://doi.org/10.1016/j.ijbiomac.2019.08.099

    Article  CAS  Google Scholar 

  40. El-Wekil MM, Abdelhady KK, Abdel Salam RA, Hadad GM (2019) Applications of fourier transform infrared spectroscopic method for simultaneous quantitation of some hypoglycemic drugs in their binary mixtures. Spectrochim Acta Part A: Mol Biomol Spectr 213:249–253. https://doi.org/10.1016/j.saa.2019.01.067

    Article  ADS  CAS  Google Scholar 

  41. Khashaba PY, Ali HRH, El-Wekil MM (2018) A rapid fourier transform infrared spectroscopic method for analysis of certain proton pump inhibitors in binary and ternary mixtures. Spectrochim Acta Part A: Mol Biomol Spectr 190:10–14. https://doi.org/10.1016/j.saa.2017.09.003

    Article  ADS  CAS  Google Scholar 

  42. Sunon P, Ngamchuea K (2023) Methylene blue molecularly imprinted polymer for melatonin determination in urine and saliva samples. Microchim Acta 190:348. https://doi.org/10.1007/s00604-023-05930-9

    Article  CAS  Google Scholar 

  43. Ali R, El-Wekil MM (2023) A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food. Food Chem 413:135666. https://doi.org/10.1016/j.foodchem.2023.135666

    Article  CAS  PubMed  Google Scholar 

  44. Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Algahtani MM, Alaseem AM, Alqahtani YSA, El-Wekil MM (2021) Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchem J 168:106439. https://doi.org/10.1016/j.microc.2021.106439

    Article  CAS  Google Scholar 

  45. El-Wekil MM, Mahmoud AM, Marzouk AA, Alkahtani SA, Ali R (2018) A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids. J Mol Liq 271:105–111. https://doi.org/10.1016/j.molliq.2018.08.105

    Article  CAS  Google Scholar 

  46. Sharafi E, Sadeghi S (2023) A highly sensitive and ecofriendly assay platform for the simultaneous electrochemical determination of rifampicin and isoniazid in human serum and pharmaceutical formulations. New J Chem 47:500–514. https://doi.org/10.1039/D2NJ04263K

    Article  CAS  Google Scholar 

  47. Alkahtani SA, Mahmoud AM, Ali R, El-Wekil MM (2024) Sonochemical synthesis of lanthanum ferrite nanoparticle–decorated carbon nanotubes for simultaneous electrochemical determination of acetaminophen and dopamine. Microchem Acta 191:25. https://doi.org/10.1007/s00604-023-06110-5

    Article  CAS  Google Scholar 

  48. BelBruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  PubMed  Google Scholar 

  49. Huang J, Qiu Z, Yang H, Chen C, Li Y (2022) Highly selective simultaneous determination of isoniazid and acetaminophen using black phosphorus nanosheets electrochemical sensor. Electrochim Acta 426:140775. https://doi.org/10.1016/j.electacta.2022.140775

    Article  CAS  Google Scholar 

  50. Mahmoud BG, Khairy M, Rashwan FA, Banks CE (2017) Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal Chem 89:2170–2178. https://doi.org/10.1021/acs.analchem.6b05130

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoud AM, Mahnashi MH, El-Wekil MM (2023) Double protein directed synthesis of chemically etched sulfur doped quantum dots for signal on–off–on sensing of glutathione mediated by copper ions. Anal Methods 15:4296–4303. https://doi.org/10.1039/D3AY00999H

    Article  CAS  PubMed  Google Scholar 

  52. Alyami BA, Mahmoud AM, Alqarni AO, Ali ABH, El-Wekil MM (2023) Ratiometric fluorometric determination of sulfide using graphene quantum dots and self-assembled thiolate-capped gold nanoclusters triggered by aluminum. Microchem Acta 190:467. https://doi.org/10.1007/s00604-023-06042-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education, Kingdom of Saudi Arabia for this research through a grant (NU/IFC/2/MRC/-/9) under the Institutional Funding Committee at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramadan Ali or Mohamed M. El-Wekil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.16 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqarni, A.O., Mahmoud, A.M., Alyami, B.A. et al. Methylene blue-assisted molecularly-imprinted film modified nitrogen and sulfur co-doped molybdenum carbide for simultaneous electrochemical determination of two hepatotoxic drugs. Microchim Acta 191, 123 (2024). https://doi.org/10.1007/s00604-024-06195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06195-6

Keywords

Navigation