Skip to main content
Log in

A flexible semiconductor SERS substrate by in situ growth of tightly aligned TiO2 for in situ detection of antibiotic residues

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Semiconductor materials have become a competitive candidate for surface-enhanced Raman scattering (SERS) substrate. However, powdered semiconductors are difficult to execute a fast in situ detection for trace analytes. Here, we developed a new flexible semiconductor SERS substrate by in situ densely growing anatase TiO2 nanoparticles on the surface of cotton fabric through a filtration-hydrothermal method, in which TiO2 exhibits excellent controllability in size and distribution by regulating the ratio of water to alcohol in synthesis and the number of filtration-hydrothermal repetitive cycle. Cotton fabric/TiO2 (Cot/TiO2) substrate exhibits a high SERS activity and excellent spectral repeatability. The developed substrate has an ultra-high stability that can withstand long-term preservation; it can even resist the corrosions of strong acid and alkali, as well as high temperature up to 100 °C and low temperature down to − 20 °C. The flexible substrate can be used to carry out a rapid in situ detection for quinolone antibiotic (enrofloxacin and enoxacin) residues on the fish body surface by using a simple swabbing method, with high quantitative detection potential (up to an order of magnitude of 10−7 M), and even for the simultaneous detection of both drug residues. The flexible substrate also exhibits an excellent recyclability up to 6 recycles in the actual SERS detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Ji W, Li LF, Song W, Wang XN, Zhao B, Ozaki Y (2019) Enhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances. Angew Chem Int Ed 58(41):14452–14456. https://doi.org/10.1002/anie.201907283

    Article  CAS  Google Scholar 

  2. Abdulazeez I, Popoola SA, Saleh TA, Al-Saadi AA (2019) Spectroscopic, DFT and trace detection study of procaine using surface-enhanced Raman scattering technique. Chem Phys Lett 730:617–622. https://doi.org/10.1016/j.cplett.2019.06.067

    Article  ADS  CAS  Google Scholar 

  3. Kamran M, Haroon M, Popoola SA, Almohammedi AR, Al-Saadi AA, Saleh TA (2019) Characterization of valeric acid using substrate of silver nanoparticles with SERS. J Mol Liq 273:536–542. https://doi.org/10.1016/j.molliq.2018.10.037

    Article  CAS  Google Scholar 

  4. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  PubMed  Google Scholar 

  5. Xu HX, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324. https://doi.org/10.1103/PhysRevE.62.4318

    Article  ADS  CAS  Google Scholar 

  6. Sivashanmugan K, Squire K, Kraai JA, Tan A, Zhao Y, Rorrer GL, Wang AX (2019) Biological photonic crystal-enhanced plasmonic mesocapsules: approaching single-molecule optofluidic-SERS sensing. Adv Opt Mater 7(13):1900415. https://doi.org/10.1002/adom.201900415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haroon M, Abdulazeez I, Saleh TA, Al-Saadi AA (2021) Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere. Electrochim Acta 387(10):138463. https://doi.org/10.1016/j.electacta.2021.138463

    Article  CAS  Google Scholar 

  8. Yu DX, Xu L, Zhang HZ, Li J, Wang WE, Yang LB, Jiang X, Zhao B (2023) A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction. Chin Chem Lett 34(7):107771. https://doi.org/10.1016/j.cclet.2022.107771

    Article  CAS  Google Scholar 

  9. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical Applications. Angew Chem Int Ed 53(19):4756–4795. https://doi.org/10.1002/anie.201205748

    Article  CAS  Google Scholar 

  10. Islam SK, Tamargo M, Moug R, Lombardi JR (2013) Surface-enhanced Raman scattering on a chemically etched ZnSe surface. J Phys Chem C 117(44):23372–23377. https://doi.org/10.1021/jp407647f

    Article  CAS  Google Scholar 

  11. Cui H, Li SY, Deng SZ, Chen HJ, Wang CX (2017) Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection. ACS Sens 2(3):386–393. https://doi.org/10.1021/acssensors.6b00712

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Kutsanedzie FYH, Hassan MM, Zhu JJ, Li HH, Chen QS (2020) Functionalized hollow Au@ Ag nanoflower SERS matrix for pesticide sensing in food. Sens Actuators B Chem 324:128718. https://doi.org/10.1016/j.snb.2020.128718

    Article  CAS  Google Scholar 

  13. Ou YM, Wang XH, Lai KQ, Huang YQ, Rasco BA, Fan YX (2018) Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of Allura red and sunset yellow in beverages. J Agric Food Chem 66(11):2954–2961. https://doi.org/10.1021/acs.jafc.8b00007

    Article  CAS  PubMed  Google Scholar 

  14. Wang KQ, Sun DW, Pu HB, Wei QY (2019) Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 191:449–456. https://doi.org/10.1016/j.talanta.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  15. Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH (2014) Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 86(13):6262–6267. https://doi.org/10.1021/ac404224f

    Article  CAS  PubMed  Google Scholar 

  16. Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83(23):8953–8958. https://doi.org/10.1021/ac2016882

    Article  CAS  PubMed  Google Scholar 

  17. Chen YM, Ge FY, Guang SY, Cai ZS (2017) Self-assembly of Ag nanoparticles on the woven cotton fabrics as mechanical flexible substrates for surface enhanced Raman scattering. J Alloys Compd 726(5):484–489. https://doi.org/10.1016/j.jallcom.2017.07.315

    Article  CAS  Google Scholar 

  18. Xiao MS, Chandrasekaran AR, Ji W, Li F, Man TT, Zhu CF, Shen XZ, Pei H, Li Q, Li L (2018) Affinity-modulated molecular beacons on MoS2 nanosheets for microRNA detection. ACS Appl Mater Interfaces 10(42):35794–35800. https://doi.org/10.1021/acsami.8b14035

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Sang QQ, Yang M, Du J, Wang WE, Yang LB, Han XX, Zhao B (2019) Metal-free SERS substrate based on rGO-TiO2-Fe3O4 nanohybrid: contribution from interfacial charge transfer and magnetic controllability. Phys Chem Chem Phys 21:12850–12858. https://doi.org/10.1039/C9CP02160D

    Article  CAS  PubMed  Google Scholar 

  20. Wang QZ, Zhao YJ, Bu T, Wang X, Xu ZH, Zhangsun H, Wang L (2022) Semi-sacrificial template growth-assisted self-supporting MOF chip: a versatile and high-performance SERS sensor for food contaminants monitoring. Sens Actuators B Chem 352:131025. https://doi.org/10.1016/j.snb.2021.131025

    Article  CAS  Google Scholar 

  21. Li LM, Chin WS (2020) Rapid fabrication of a flexible and transparent Ag nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl Mater Interfaces 12:37538–37548. https://doi.org/10.1021/acsami.0c07178

    Article  CAS  PubMed  Google Scholar 

  22. Marwa A, Soraa B, Conceição DS, Ferraria AM, Vieira Ferreira LF, Botelho do Rego AM, Vilar MR, Boufi S (2016) Hybrid cotton-anatase prepared under mild conditions with high photocatalytic activity under sunlight. RSC Adv 6:58957–58969. https://doi.org/10.1039/C6RA10806G

    Article  ADS  CAS  Google Scholar 

  23. Joshi DN, Prasath RA (2016) Low temperature rapid synthesis of direct mesoporous anatase TiO2 nano-aggregates and its application in dye-sensitized solar cell. Mater Today: Proc 3(6):2413–2421. https://doi.org/10.1016/j.matpr.2016.04.156

    Article  Google Scholar 

  24. Yang L, Li X, Wang ZR, Shen Y, Liu M (2017) Natural fiber templated TiO2 microtubes via a double soaking sol-gel route and their photocatalytic performance. Appl Surf Sci 420(31):346–354. https://doi.org/10.1016/j.apsusc.2017.05.168

    Article  ADS  CAS  Google Scholar 

  25. Ran JH, Chen HB, Bi SG, Guo QF, Yan CW, Tang XN, Cheng DS, Cai GM, Wang X (2021) Polydopamine-induced in-situ growth of zeolitic imidazolate framework-8/TiO2 nanoparticles on cotton fabrics for photocatalytic performance. Prog Org Coat 152:106123. https://doi.org/10.1016/j.porgcoat.2020.106123

    Article  CAS  Google Scholar 

  26. Hamden Z, Bouattour S, Ferraria AM, Ferreira DP, Vieira Ferreira LF, Botelho do Rego AM, Boufi S (2016) In situ generation of TiO2 nanoparticles using chitosan as a template and their photocatalytic activity. J Photochem Photobiol A 321:211–222. https://doi.org/10.1016/j.jphotochem.2016.02.008

    Article  CAS  Google Scholar 

  27. Li LF, Xu WL, Wu X, Liu X, Li WB (2017) Fabrication and characterization of infrared-insulating cotton fabrics by ALD. Cellulose 24:3981–3990. https://doi.org/10.1007/s10570-017-1380-0

    Article  CAS  Google Scholar 

  28. Shi CF, Ma H, Wo ZH, Zhang XW (2021) Superhydrophobic modification of the surface of cellulosic materials based on honeycomb-like zinc oxide structures and their application in oil-water separation. App Surf Sci 563(15):150291. https://doi.org/10.1016/j.apsusc.2021.150291

    Article  CAS  Google Scholar 

  29. Wang W, Gu BH, Liang LY, Hamilton WA, Wesolowski DJ (2004) Synthesis of rutile (α-TiO2) nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition. J Phys Chem B 108(39):14789–14792. https://doi.org/10.1021/jp0470952

    Article  CAS  Google Scholar 

  30. Yang LB, Jiang X, Ruan WD, Zhao B, Xu WQ, Lombardi JR (2008) Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J Phys Chem C 112(50):20095–20098. https://doi.org/10.1021/jp8074145

    Article  CAS  Google Scholar 

  31. Yang LB, Gong MD, Jiang X, Yin D, Qin XY, Zhao B, Ruan WD (2015) Investigation on SERS of different phase structure TiO2 nanoparticles. J Raman Spectrosc 46(3):287–292. https://doi.org/10.1002/jrs.4645

    Article  ADS  CAS  Google Scholar 

  32. Yang LB, Yin D, Shen Y, Yang M, Li XL, Han XX, Jiang X, Zhao B (2017) Highly-dispersed TiO2 nanoparticles with abundant active sites induced by surfactants as a prominent substrate for SERS: charge transfer contribution. Phys Chem Chem Phys 19(33):22302–22308. https://doi.org/10.1039/C7CP04361A

    Article  CAS  PubMed  Google Scholar 

  33. Yang LB, Yin D, Shen Y, Yang M, Li XL, Han XX, Jiang X, Zhao B (2017) Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Phys Chem Chem Phys 19(28):18731–18738. https://doi.org/10.1039/C7CP03399K

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Zhang HZ, Yu DX, Wang WE, Song W, Yang LB, Jiang X, Zhao B (2022) Mixed valence Ce-doped TiO2 with multiple energy levels and efficient charge transfer for boosted SERS performance. Spectrochim Acta A 281(15):121643. https://doi.org/10.1016/j.saa.2022.121643

    Article  CAS  Google Scholar 

  35. Islam MJ, Reddy DA, Choi J, Kim TK (2016) Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO2-AgI nanocomposite. RSC Adv 6(23):19341–19350. https://doi.org/10.1039/C5RA27533D

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (21804054, 21773080), the Natural Science Foundation of Heilongjiang Province of China for Distinguished Young Scholars (JQ2019B002), and the Scientific Research Project of Qiqihar University (130412223001, 130412223002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libin Yang, Xin Jiang or Bing Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Jiang, H., Wang, L. et al. A flexible semiconductor SERS substrate by in situ growth of tightly aligned TiO2 for in situ detection of antibiotic residues. Microchim Acta 191, 113 (2024). https://doi.org/10.1007/s00604-024-06193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06193-8

Keywords

Navigation