Skip to main content
Log in

A signal polarity conversion photoelectrochemical immunosensor for neuron-specific enolase detection based on MgIn2S4-sensitized CsPbBr3

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) immunosensor was designed based on MgIn2S4-decorated inorganic halide perovskite CsPbBr3 combined with the signal polarity conversion strategy for neuron-specific enolase (NSE) detection. CsPbBr3 was applied as the basic photoactive material owing to its excellent optical and electronic properties, which provide a good PEC performance for sensor construction. In order to improve the stability of this perovskite, the three-dimensional flower-like MgIn2S4 with a desirable direct band gap was applied to enhance the PEC response. Also, the excellent structure of MgIn2S4 provides large surface-active sites for CsPbBr3 loaded. For enhancing the detection sensitivity of PEC immunosensor, p-type CuInS2 was used as a signal probe which fixed on detection antibody (Ab2). When the target NSE was present, the photogenerated electrons produced by CuInS2 were transferred to the test solution, and the polarity of PEC signal changes. Based on the above photosensitive materials and signal conversion strategy, the proposed PEC immunosensor showed favorable detection performance, and the linear detection range is 0.0001 ~ 100 ng/mL with a 38 fg/mL of detection limit. The proposed strategy improved the adhibition of CsPbBr3 in the analytical chemistry field as well as provided a reference method for other protein detections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller KD, Fidler-Benaoudia M, Keegan TH, Hipp HS, Jemal A, Siegel RL (2020) Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 70:443–459

    Article  PubMed  Google Scholar 

  2. Li N, Chen H, Zhang M, Zha Y, Mu Z, Ma Y et al (2020) A universal ultrasensitive platform for enzyme-linked immunoassay based on responsive surface-enhanced Raman scattering. Sens Actuators B-Chem 315:128135

    Article  CAS  Google Scholar 

  3. Yang X, Zhao Y, Sun L, Qi H, Gao Q, Zhang C (2018) Electrogenerated chemiluminescence biosensor array for the detection of multiple AMI biomarkers. Sens Actuators B-Chem 257:60–67

    Article  CAS  Google Scholar 

  4. Sun ZH, Zhang XX, Xu D, Liu J, Yu RJ, Jing C et al (2021) Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker. Talanta 225:121963

    Article  CAS  PubMed  Google Scholar 

  5. Juzgado A, Solda A, Ostric A, Criado A, Valenti G, Rapino S et al (2017) Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J Mater Chem B 5:6681–6687

    Article  CAS  PubMed  Google Scholar 

  6. Simoska O, Duay J, Stevenson KJ (2020) Electrochemical detection of multianalyte biomarkers in wound healing efficacy. ACS Sens 5:3547–3557

    Article  CAS  PubMed  Google Scholar 

  7. Dal Bello MG, Filiberti RA, Alama A, Orengo AM, Mussap M, Coco S et al (2019) The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients. J Transl Med 17:74

    Article  Google Scholar 

  8. Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A et al (2008) Nucleosomes, ProGRP, NSE, CYFRA 21–1, and CEA in monitoring first-line chemotherapy of small cell lung cancer. Clin Cancer Res 14:7813–7821

    Article  CAS  PubMed  Google Scholar 

  9. Huang JM, Lai ML, Lin J, Yang PD (2018) Rich chemistry in inorganic halide perovskite nanostructures. Adv Mater 30:1802856

    Article  Google Scholar 

  10. Bergamini L, Sangiorgi N, Gondolini A, Sanson A (2020) CsPbBr3 for photoelectrochemical cells. Sol Energy 212:62–72

    Article  ADS  CAS  Google Scholar 

  11. Zhong Q, Cao M, Hu H, Yang D, Chen M, Li P et al (2018) One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano 12:8579–8587

    Article  CAS  PubMed  Google Scholar 

  12. Guo Z-A, Zhang B, Li H, Ming H, Bala H, Yao S et al (2020) Visible light responsive CsPbBr3/TiO2 photocatalyst with long-term stability in aqueous solution. Mater Lett 274:128041

    Article  CAS  Google Scholar 

  13. Cho S, Yun SH (2021) Poly(catecholamine) coated CsPbBr3 perovskite microlasers: lasing in water and biofunctionalization. Adv Funct Mater 31:2101902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu H, Wu L, Tan Y, Zhong Q, Chen M, Qiu Y et al (2018) Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J Am Chem Soc 140:406–412

    Article  CAS  PubMed  Google Scholar 

  15. Li ZJ, Hofman E, Li J, Davis AH, Tung CH, Wu LZ et al (2017) Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv Funct Mater 28:1704288

    Article  Google Scholar 

  16. Zeng C, Zeng Q, Dai C, Zhang L, Hu Y (2021) Synergistic effect of surface coated and bulk doped carbon on enhancing photocatalytic CO2 reduction for MgIn2S4 microflowers. Appl Surf Sci 542:148686

    Article  CAS  Google Scholar 

  17. Chen W, Hua Y-X, Wang Y, Huang T, Liu T-Y, Liu X-H (2017) Two-dimensional mesoporous g-C3N4 nanosheet-supported MgIn2S4 nanoplates as visible-light-active heterostructures for enhanced photocatalytic activity. J Catal 349:8–18

    Article  CAS  Google Scholar 

  18. Yang L, Liu X, Li L, Zhang S, Zheng H, Tang Y et al (2019) A visible light photoelectrochemical sandwich aptasensor for adenosine triphosphate based on MgIn2S4-TiO2 nanoarray heterojunction. Biosens Bioelectron 142:111487

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Dong Y, Wang Z, Li Y, Dai C, Ma D et al (2021) Synthesis, characterization, and photocatalytic activity of stannum-doped MgIn2S4 microspheres. J Alloy Compd 860:158446

    Article  CAS  Google Scholar 

  20. Xu Y-T, Yu S-Y, Zhu Y-C, Fan G-C, Han D-M, Qu P et al (2019) Cathodic photoelectrochemical bioanalysis, TrAC. Trends Anal Chem 114:81–88

    Article  CAS  Google Scholar 

  21. Silva RR, Freitas DV, Sousa FLN, Jesus AC, Silva SE, Mansur AAP et al (2021) Synthesis of CuInS2 and CuInS2@ZnX (X= S, Se) nanoparticles for bioimaging of cancer cells using electrochemically generated S2- and Se2-. J Alloy Compd 853:156926

    Article  CAS  Google Scholar 

  22. Fan GC, Shi XM, Zhang JR, Zhu JJ (2016) Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem 88:10352–10356

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Lu X, Chen D (2018) Photoelectrochemical water splitting of CuInS2 photocathode collaborative modified with separated catalysts based on efficient photogenerated electron–hole separation. ACS Sustainable Chem Eng 6:10289–10294

    Article  CAS  Google Scholar 

  24. Guo Y, Ao Y, Wang P, Wang C (2019) Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl Catal B 254:479–490

    Article  CAS  Google Scholar 

  25. Acharya L, Swain G, Mishra BP, Acharya R, Parida K (2022) Development of MgIn2S4 microflower-embedded exfoliated B-doped g-C3N4 nanosheets: p–n heterojunction photocatalysts toward photocatalytic water reduction and H2O2 production under visible-light irradiation. ACS Appl Energy Mater 5:2838–2852

    Article  CAS  Google Scholar 

  26. Peng S, Liang Y, Cheng F, Liang J (2011) Size-controlled chalcopyrite CuInS2 nanocrystals: one-pot synthesis and optical characterization. Sci China Chem 55:1236–1241

    Article  Google Scholar 

  27. Courtel FM, Hammami A, Imbeault R, Hersant G, Paynter RW, Marsan B et al (2010) Synthesis of n-type CuInS2 particles using N-methylimidazole, characterization and growth mechanism. Chem Mater 22:3752–3761

    Article  CAS  Google Scholar 

  28. Long GL, Winefordner JD (1983) Limit of detection. Anal Chem 55:712–720

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 22274062, 22206056), the Shandong Provincial Natural Science Foundation (No. ZR2022QB117, No. ZR2020QB097, No. ZR201911110108), and Special Foundation for Taishan Scholar Professorship of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Xu or Qin Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1284 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Dai, L., Du, Y. et al. A signal polarity conversion photoelectrochemical immunosensor for neuron-specific enolase detection based on MgIn2S4-sensitized CsPbBr3. Microchim Acta 191, 84 (2024). https://doi.org/10.1007/s00604-023-06174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06174-3

Keywords

Navigation