Skip to main content
Log in

Ultrasensitive electrochemical sensor for detection of salivary cortisol in stress conditions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A natural stress response induces elevated cortisol levels in biological fluids, such as saliva. While current sensor technologies can detect cortisol in real time, their sensitivity and reliability for human subjects have not been assured. This is due to relatively low concentrations of salivary cortisol, which fluctuate throughout the day and vary significantly between individuals. To address these challenges, we present an improved electrochemical biosensor leveraging graphene’s exceptional conductivity and physicochemical properties. A 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE-NHS)–modified commercial graphene foam (GF) electrode is presented to realize an ultra-sensitive biosensor for cortisol detection directly in human saliva. The biosensor fabrication process entails the attachment of anti-cortisol monoclonal antibodies (mAb-cort) onto a PBASE-NHS/GF electrode through noncovalent immobilization on the vertically stratified graphene foam electrode surface. This unique immobilization strategy preserves graphene’s structural integrity and electrical conductivity while facilitating antibody immobilization. The binding of cortisol to immobilized mAb-cort is read out via differential pulse voltammetry using ferri/ferro redox reactions. The immunosensor demonstrates an exceptional dynamic range of 1.0 fg mL−1 to 10,000 pg mL−1 (R2 = 0.9914) with a detection limit of 0.24 fg mL−1 (n = 3) for cortisol. Furthermore, we have established the reliability of cortisol sensors in monitoring human saliva. We have also performed multiple modes of validation, one against the established enzyme-linked immunosorbent assay (ELISA) and a second by a third-party service Salimetric on 16 student volunteers exposed to different stress levels, showing excellent correlation (r = 0.9961). These findings suggest the potential for using mAb-cort/PBASE-NHS/GF-based cortisol electrodes for monitoring salivary cortisol in the general population.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldstein DS, Mcewen B (2002) Allostasis, homeostats, and the nature of stress. Stress 5:55–58. https://doi.org/10.1080/102538902900012345

    Article  PubMed  Google Scholar 

  2. Pusomjit P, Teengam P, Thepsuparungsikul N et al (2021) Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Microchim Acta 188:1–8. https://doi.org/10.1007/S00604-020-04692-Y/TABLES/2

    Article  Google Scholar 

  3. McCarty R (2016) Learning about stress: neural, endocrine and behavioral adaptations. Stress 19:449–475. https://doi.org/10.1080/10253890.2016.1192120

    Article  CAS  PubMed  Google Scholar 

  4. Draghici AE, Taylor JA (2016) The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol 35:. https://doi.org/10.1186/S40101-016-0113-7

  5. Liu X, Hsu SPC, Liu WC et al (2019) Salivary electrochemical cortisol biosensor based on tin disulfide nanoflakes. Nanoscale Res Lett 14:1–9. https://doi.org/10.1186/S11671-019-3012-0/TABLES/3

    Article  ADS  Google Scholar 

  6. Bracha HS (2004) Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum. CNS Spectr 9:679–685. https://doi.org/10.1017/S1092852900001954

    Article  PubMed  Google Scholar 

  7. Liu J, Xu N, Men H et al (2020) Salivary cortisol determination on smartphone-based differential pulse voltammetry system. Sensors (Basel) 20:1422. https://doi.org/10.3390/S20051422

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Thomsson O, Ström-Holst B, Sjunnesson Y, Bergqvist AS (2014) Validation of an enzyme-linked immunosorbent assay developed for measuring cortisol concentration in human saliva and serum for its applicability to analyze cortisol in pig saliva. Acta Vet Scand 56:55. https://doi.org/10.1186/S13028-014-0055-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kataoka H, Matsuura E, Mitani K (2007) Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. J Pharm Biomed Anal 44:160–165. https://doi.org/10.1016/J.JPBA.2007.01.023

    Article  CAS  PubMed  Google Scholar 

  10. Gong S, Miao YL, Jiao GZ et al (2015) Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS ONE 10:e0117503. https://doi.org/10.1371/JOURNAL.PONE.0117503

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim HT, Jin E, Lee MH (2021) Portable chemiluminescence-based lateral flow assay platform for the detection of cortisol in human serum. Biosensors (Basel) 11:191. https://doi.org/10.3390/BIOS11060191/S1

    Article  PubMed  Google Scholar 

  12. Jo S, Lee W, Park J et al (2020) Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens Actuators B Chem 304:127424. https://doi.org/10.1016/J.SNB.2019.127424

    Article  CAS  Google Scholar 

  13. Ito T, Aoki N, Kaneko S, Suzuki K (2014) Highly sensitive and rapid sequential cortisol detection using twin sensor QCM. Anal Methods 6:7469–7474. https://doi.org/10.1039/C4AY01387E

    Article  CAS  Google Scholar 

  14. Sasaki Y, Zhang Y, Fan H et al (2023) Accurate cortisol detection in human saliva by an extended-gate-type organic transistor functionalized with a molecularly imprinted polymer. Sens Actuators B Chem 382:133458. https://doi.org/10.1016/J.SNB.2023.133458

    Article  CAS  Google Scholar 

  15. Maruyama Y, Kawano A, Okamoto S et al (2012) Differences in salivary alpha-amylase and cortisol responsiveness following exposure to electrical stimulation versus the Trier Social Stress Tests. PLoS One 7:. https://doi.org/10.1371/JOURNAL.PONE.0039375

  16. Kämäräinen S, Mäki M, Tolonen T, Palleschi G, Virtanen V, Micheli L, Sesay AM (2018) Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 188:50–57. https://doi.org/10.1016/j.talanta.2018.05.039

  17. Dalirirad S, Han D, Steckl AJ (2020) Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega 5:32890–32898. https://doi.org/10.1021/ACSOMEGA.0C03223/ASSET/IMAGES/LARGE/AO0C03223_0010.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhull N, Kaur G, Gupta V, Tomar M (2019) Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sens Actuators B Chem 293:281–288. https://doi.org/10.1016/J.SNB.2019.05.020

    Article  CAS  Google Scholar 

  19. Parlak O, Keene ST, Marais A, Curto VF, Salleo A (2018) Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci Adv 4(7):2904. https://doi.org/10.1126/sciadv.aar2904

  20. Mei X, Yang J, Yu X et al (2023) Wearable molecularly imprinted electrochemical sensor with integrated nanofiber-based microfluidic chip for in situ monitoring of cortisol in sweat. Sens Actuators B Chem 381:133451. https://doi.org/10.1016/J.SNB.2023.133451

    Article  CAS  Google Scholar 

  21. Fiore L, Mazzaracchio V, Serani A et al (2023) Microfluidic paper-based wearable electrochemical biosensor for reliable cortisol detection in sweat. Sens Actuators B Chem 379:133258. https://doi.org/10.1016/J.SNB.2022.133258

    Article  CAS  Google Scholar 

  22. Khumngern S, Jeerapan I (2023) Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 415:3863–3877. https://doi.org/10.1007/S00216-023-04577-Y

    Article  CAS  PubMed  Google Scholar 

  23. Zea M, Bellagambi FG, Ben Halima H et al (2020) Electrochemical sensors for cortisol detections: Almost there. TrAC - Trends Anal Chem 132:116058

    Article  CAS  Google Scholar 

  24. Frias IAM, Zine N, Sigaud M et al (2023) Non-covalent π-π functionalized Gii-senseⓇ graphene foam for interleukin 10 impedimetric detection. Biosens Bioelectron 222:114954. https://doi.org/10.1016/j.bios.2022.114954

    Article  CAS  Google Scholar 

  25. Nah JS, Barman SC, Zahed MA et al (2021) A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens Actuators B Chem 329:129206. https://doi.org/10.1016/J.SNB.2020.129206

    Article  CAS  Google Scholar 

  26. Strong V, Dubin S, El-Kady MF et al (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6:1395–1403. https://doi.org/10.1021/NN204200W/SUPPL_FILE/NN204200W_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  27. Kavai MS, de Lima LF, de Araujo WR (2023) A disposable and low-cost laser-scribed graphene electrochemical sensor for simultaneous detection of hydroquinone, paracetamol and methylparaben. Mater Lett 330:133211. https://doi.org/10.1016/J.MATLET.2022.133211

    Article  CAS  Google Scholar 

  28. Noh HJ, Im YK, Yu SY et al (2020) Vertical two-dimensional layered fused aromatic ladder structure. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-16006-0

    Article  ADS  CAS  Google Scholar 

  29. Park S, Ji SG, Yoon Y et al (2021) Fabrication of fanlike L-shaped graphene nanostructures with enhanced thermal/electrochemical properties via laser irradiation. Carbon N Y 182:691–699. https://doi.org/10.1016/J.CARBON.2021.05.045

    Article  CAS  Google Scholar 

  30. Sharma A, Istamboulie G, Hayat A et al (2017) Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens Actuators B Chem 245:. https://doi.org/10.1016/j.snb.2017.02.002

  31. Ni ZH, Yu T, Luo ZQ et al (2009) Probing charged impurities in suspended graphene using raman spectroscopy. ACS Nano 3:569–574. https://doi.org/10.1021/NN900130G/ASSET/IMAGES/NN-2009-00130G_M008.GIF

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Wang Y, Cao X et al (2009) Vibrational properties of graphene and graphene layers. J Raman Spectrosc 40:1791–1796. https://doi.org/10.1002/JRS.2321

    Article  ADS  CAS  Google Scholar 

  33. Bao Q, Zhang H, Yang JX et al (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791. https://doi.org/10.1002/ADFM.200901658

    Article  CAS  Google Scholar 

  34. Khan NI, Mousazadehkasin M, Ghosh S et al (2020) An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst 145:4494–4503. https://doi.org/10.1039/d0an00251h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. AzevedoBeluomini M, Wang Y, Wang L et al (2022) Polymer of intrinsic microporosity (PIM-1) enhances hydrogen peroxide production at Gii-Sens graphene foam electrodes. Electrochem commun 143:107394. https://doi.org/10.1016/j.elecom.2022.107394

    Article  CAS  Google Scholar 

  36. Brunetti and B, (2015) an open access journal about estimating the limit of detection by the signal to noise approach. Pharm Anal Acta 6:4. https://doi.org/10.4172/2153-2435.1000355

    Article  Google Scholar 

  37. Zubarev A, Cuzminschi M, Iordache AM et al (2022) Graphene-based sensor for the detection of cortisol for stress level monitoring and diagnostics. Diagnostics 12:2593. https://doi.org/10.3390/DIAGNOSTICS12112593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arya SK, Chornokur G, Venugopal M, Bhansali S (2010) Antibody functionalized interdigitated μ-electrode (IDμE) based impedimetric cortisol biosensor. Analyst 135:1941–1946. https://doi.org/10.1039/C0AN00242A

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Pan D, Khan MS, Misra SK et al (2017) paper-based analytical biosensor chip designed from graphene-nanoplatelet-amphiphilic-diblock-co-polymer composite for cortisol detection in human saliva. Anal Chem 89:2107–2115. https://doi.org/10.1021/acs.analchem.6b04769

    Article  CAS  PubMed  Google Scholar 

  40. Khan MS, Dighe K, Wang Z et al (2017) Ultra-sensitive paper-based biosensor for cortisol sensing in human saliva with electrical impedance analyzer. 2017 IEEE Healthcare Innovations and Point of Care Technologies, HI-POCT 2017 2017-December:184–187. https://doi.org/10.1109/HIC.2017.8227615

  41. ErtuğrulUygun HD, Uygun ZO, Canbay E et al (2020) Non-invasive cortisol detection in saliva by using molecularly cortisol imprinted fullerene-acrylamide modified screen printed electrodes. Talanta 206:120225. https://doi.org/10.1016/J.TALANTA.2019.120225

    Article  Google Scholar 

  42. Tuteja SK, Ormsby C, Neethirajan S (2018) Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nanomicro Lett 10. https://doi.org/10.1007/s40820-018-0193-5

Download references

Funding

This work was supported by the National Science Foundation (NSF) under Grant 1931978. It was also partially supported through the TTW program at the Uniformed Services University of Health Sciences (USUHS) under the award HU0001-20-2-0014 and the DoD Peer Review Medical Research Program award number W81XWH-21-2-0012. Human samples were collected as per protocol approved by the Institutional Review Board (IRB) at Tufts University (1706030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Sonkusale.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7.48 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Wulff, A., Thomas, A. et al. Ultrasensitive electrochemical sensor for detection of salivary cortisol in stress conditions. Microchim Acta 191, 103 (2024). https://doi.org/10.1007/s00604-023-06169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06169-0

Keywords

Navigation