Skip to main content
Log in

Carbon nanomaterials for sweat-based sensors: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sweat is easily accessible from the human skin’s surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gao W et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonner Z et al (2015) The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9(3):031301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Giovanni N, Fucci N (2013) The current status of sweat testing for drugs of abuse: a review. Curr Med Chem 20(4):545–561

    PubMed  Google Scholar 

  4. Kim J et al (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pirovano P et al (2020) A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219:121145

    Article  CAS  PubMed  Google Scholar 

  6. Zhai Q et al (2020) Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis. Anal Chem 92(6):4647–4655

    Article  CAS  PubMed  Google Scholar 

  7. Mitsubayashi K et al (1994) Analysis of metabolites in sweat as a measure of physical condition. Anal Chim Acta 289(1):27–34

    Article  CAS  Google Scholar 

  8. Zhang H et al (2022) Integrated solid-state wearable sweat sensor system for sodium and potassium ion concentration detection. Sens Rev 42(1):76–88

    Article  Google Scholar 

  9. Bariya M, Nyein HYY, Javey A (2018) Wearable sweat sensors. Nat Electron 1(3):160–171

    Article  Google Scholar 

  10. Al-Omari M et al (2014) Detection of relative [Na+] and [K+] levels in sweat with optical measurements. J Appl Phys 115(20):203107

    Article  Google Scholar 

  11. Keene ST et al (2019) Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration. Adv Healthcare Mater 8(24):1901321

    Article  CAS  Google Scholar 

  12. Schittek B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2(12):1133–1137

    Article  CAS  PubMed  Google Scholar 

  13. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Xu Z, Yoon J (2011) Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004–2010. Chem Soc Rev 40(5):2222–2235

    Article  CAS  PubMed  Google Scholar 

  15. Taniselass S, Arshad MM, Gopinath SC (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292

    Article  CAS  PubMed  Google Scholar 

  16. Bauer M et al (2021) Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem 413:763–777

    Article  CAS  PubMed  Google Scholar 

  17. Jalal AH et al (2018) Prospects and challenges of volatile organic compound sensors in human healthcare. Acs Sensors 3(7):1246–1263

    Article  CAS  PubMed  Google Scholar 

  18. Gao W et al (2016) Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. Acs Sensors 1(7):866–874

    Article  CAS  Google Scholar 

  19. Bandodkar AJ, Jeerapan I, Wang J (2016) Wearable chemical sensors: present challenges and future prospects. Acs Sensors 1(5):464–482

    Article  CAS  Google Scholar 

  20. Lee H et al (2018) Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthcare Mater 7(8):1701150

    Article  Google Scholar 

  21. Rathi P et al (2017) Real-time, wearable, biomechanical movement capture of both humans and robots with metal-free electrodes. ACS Omega 2(8):4132–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong S, Cheng W (2017) One-dimensional nanomaterials for soft electronics. Adv Electron Mater 3(3):1600314

    Article  Google Scholar 

  23. Jang H et al (2016) Graphene-based flexible and stretchable electronics. Adv Mater 28(22):4184–4202

    Article  CAS  PubMed  Google Scholar 

  24. Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  PubMed  Google Scholar 

  25. Ambrosi A et al (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari JN et al (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10(1):46–80

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q et al (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22(12):3203–3209

    Article  CAS  PubMed  Google Scholar 

  28. Goyal RN, Singh SP (2006) Voltammetric quantification of adenine and guanine at C60 modified glassy carbon electrodes. J Nanosci Nanotechnol 6(12):3699–3704

    Article  CAS  PubMed  Google Scholar 

  29. Tucek J et al (2014) Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8):7571–7612

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  CAS  PubMed  Google Scholar 

  31. di Sant’Agnese PA et al (1953) Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas: clinical significance and relationship to the disease. Pediatrics 12(5):549–563

    Article  PubMed  Google Scholar 

  32. Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  33. Lynch A, Diamond D, Leader M (2000) Point-of-need diagnosis of cystic fibrosis using a potentiometric ion-selective electrode array. Analyst 125(12):2264–2267

    Article  CAS  PubMed  Google Scholar 

  34. Weber J et al (2006) Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sens Actuators, B Chem 117(1):308–313

    Article  CAS  Google Scholar 

  35. Lamas-Ardisana PJ et al (2014) Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly (diallyldimethylammonium chloride) films. Biosens Bioelectron 56:345–351

    Article  CAS  PubMed  Google Scholar 

  36. Lei Y et al (2019) Laser-scribed graphene electrodes derived from lignin for biochemical sensing. ACS Applied Nano Mater 3(2):1166–1174

    Article  Google Scholar 

  37. Zheng XT et al (2020) Noncovalent fluorescent biodot–protein conjugates with well-preserved native functions for improved sweat glucose detection. Bioconjug Chem 31(3):754–763

    Article  CAS  PubMed  Google Scholar 

  38. Choi J et al (2018) Skin-interfaced systems for sweat collection and analytics. Sci Adv 4(2):eaar3921

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi J et al (2019) Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sensors 4(2):379–388

    Article  CAS  PubMed  Google Scholar 

  40. Sekine Y et al (2018) A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip 18(15):2178–2186

    Article  CAS  PubMed  Google Scholar 

  41. Cui Y et al (2020) Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS Sensors 5(7):2096–2105

    Article  CAS  PubMed  Google Scholar 

  42. Bandodkar AJ et al (2019) Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 5(1):eaav3294

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y et al (2019) Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 19(9):1545–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SB et al (2020) Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab Chip 20(1):84–92

    Article  CAS  PubMed  Google Scholar 

  45. Reeder JT et al (2019) Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci Adv 5(1):eaau6356

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wongkaew N et al (2018) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119(1):120–194

    Article  PubMed  Google Scholar 

  47. Ghaffari R, Rogers JA, Ray TR (2021) Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens Actuators, B Chem 332:129447

    Article  CAS  PubMed  Google Scholar 

  48. Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. John Wiley & Sons

  49. Wang Z et al (2021) Engineering materials for electrochemical sweat sensing. Adv Func Mater 31(12):2008130

    Article  CAS  Google Scholar 

  50. Scozzari A (2008) Electrochemical sensing methods: a brief review. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht

  51. Damiati S, Schuster B (2020) Electrochemical biosensors based on S-layer proteins. Sensors 20(6):1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grieshaber D et al (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fanjul-Bolado P et al (2007) Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 74(3):427–433

    Article  CAS  PubMed  Google Scholar 

  54. Nag A, Mukhopadhyay SC, Kosel J (2017) Wearable flexible sensors: A review. IEEE Sens J 17(13):3949–3960

    Article  CAS  Google Scholar 

  55. Huang C-T et al (2002) Uric acid and urea in human sweat. Chin J Physiol 45(3):109–116

    CAS  PubMed  Google Scholar 

  56. Russell E et al (2014) The detection of cortisol in human sweat: implications for measurement of cortisol in hair. Ther Drug Monit 36(1):30–34

    Article  CAS  PubMed  Google Scholar 

  57. Taylor NA, Machado-Moreira CA (2013) Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extreme Physiol Med 2(1):1–30

    Article  Google Scholar 

  58. Yeung KK et al (2021) Recent advances in electrochemical sensors for wearable sweat monitoring: A review. IEEE Sens J 21(13):14522–14539

    Article  CAS  Google Scholar 

  59. Baker LB, Wolfe AS (2020) Physiological mechanisms determining eccrine sweat composition. Eur J Appl Physiol 120:719–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao L et al (2020) A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal Chim Acta 1096:34–43

    Article  CAS  PubMed  Google Scholar 

  61. Yao Y et al (2021) Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens Bioelectron 179:113078

    Article  CAS  PubMed  Google Scholar 

  62. Moyer J et al (2012) Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther 14(5):398–402

    Article  CAS  PubMed  Google Scholar 

  63. Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    Article  CAS  PubMed  Google Scholar 

  64. Kim J et al (2015) Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem Commun 51:41–45

    Article  CAS  Google Scholar 

  65. Cordova A, Alvarez-Mon M (1995) Behaviour of zinc in physical exercise: a special reference to immunity and fatigue. Neurosci Biobehav Rev 19(3):439–445

    Article  CAS  PubMed  Google Scholar 

  66. Cordova A, Navas F (1999) Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sportsmen. Occup Health Ind Med 1(40):49

    Google Scholar 

  67. Mondal S, Subramaniam C (2019) Point-of-care, cable-type electrochemical Zn2+ sensor with ultrahigh sensitivity and wide detection range for soil and sweat analysis. ACS Sustain Chem Eng 7(17):14569–14579

    Article  CAS  Google Scholar 

  68. Luetkemeier MJ, Coles MG, Askew EW (1997) Dietary sodium and plasma volume levels with exercise. Sports Med 23:279–286

    Article  CAS  PubMed  Google Scholar 

  69. Rosner MH, Kirven J (2007) Exercise-associated hyponatremia. Clin J Am Soc Nephrol 2(1):151–161

    Article  PubMed  Google Scholar 

  70. Maughan R, Shirreffs S (2010) Dehydration and rehydration in competative sport. Scand J Med Sci Sports 20:40–47

    Article  PubMed  Google Scholar 

  71. Eichner ER (2008) Genetic and other determinants of sweat sodium. Curr Sports Med Rep 7(4):S36–S40

    Article  Google Scholar 

  72. Parrilla M et al (2016) Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat. Electroanalysis 28(6):1267–1275

    Article  CAS  Google Scholar 

  73. Coppedè N et al (2020) Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Org Electron 78:105579

    Article  Google Scholar 

  74. He W et al (2019) Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci Adv 5(11):eaax0649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu Y et al (2019) Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58:624–632

    Article  CAS  Google Scholar 

  76. Kardalas E et al (2018) Hypokalemia: a clinical update. Endocr Connect 7(4):R135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Valdivielso JM et al (2021) Hyperkalemia in chronic kidney disease in the new era of kidney protection therapies. Drugs 81(13):1467–1489

    Article  CAS  PubMed  Google Scholar 

  78. Mo L et al (2023) Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat. Chem Eng J 454:140473

    Article  CAS  Google Scholar 

  79. Kim JP et al (2017) Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of cystic fibrosis. Chem Sci 8(1):550–558

    Article  CAS  PubMed  Google Scholar 

  80. Farrell PM et al (2001) Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Pediatrics 107(1):1–13

    Article  CAS  PubMed  Google Scholar 

  81. LeGrys VA (2001) Assessment of sweat-testing practices for the diagnosis of cystic fibrosis. Arch Pathol Lab Med 125(11):1420–1424

    Article  CAS  PubMed  Google Scholar 

  82. Lezana JL et al (2003) Sweat conductivity and chloride titration for cystic fibrosis diagnosis in 3834 subjects. J Cyst Fibros 2(1):1–7

    Article  CAS  PubMed  Google Scholar 

  83. Pagaduan JV et al (2018) Revisiting sweat chloride test results based on recent guidelines for diagnosis of cystic fibrosis. Pract Lab Med 10:34–37

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fellmann N, Fabry R, Coudert J (1989) Calf sweat lactate in peripheral arterial occlusive disease. Am J Physiol-Heart Circ Physiol 257(2):H395–H398

    Article  CAS  Google Scholar 

  85. Artiss JD et al (2000) A liquid-stable reagent for lactic acid lsevels: application to the Hitachi 911 and Beckman CX7. Am J Clin Pathol 114(1):139–143

    Article  CAS  PubMed  Google Scholar 

  86. Frost M, Meyerhoff ME (2006) In vivo chemical sensors: tackling biocompatibility. Anal Chem 78(21):7370–7377

    Article  CAS  PubMed  Google Scholar 

  87. Pfeiffer D et al (1997) Amperometric lactate oxidase catheter for real-time lactate monitoring based on thin film technology. Biosens Bioelectron 12(6):539–550

    Article  CAS  PubMed  Google Scholar 

  88. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490

    Article  PubMed  Google Scholar 

  89. Polliack A, Taylor R, Bader D (1997) Sweat analysis following pressure ischaemia in a group of debilitated subjects. J Rehabil Res Dev 34:303–308

    CAS  PubMed  Google Scholar 

  90. Pérez S, Sánchez S, Fabregas E (2012) Enzymatic strategies to construct L-lactate biosensors based on polysulfone/carbon nanotubes membranes. Electroanalysis 24(4):967–974

    Article  Google Scholar 

  91. Piano M et al (2010) Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt, coated with lactate dehydrogenase and NAD+. Talanta 82(1):34–37

    Article  CAS  PubMed  Google Scholar 

  92. Zorn JV et al (2017) Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 77:25–36

    Article  CAS  PubMed  Google Scholar 

  93. Corbalán-Tutau D et al (2014) Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol Behav 123:231–235

    Article  PubMed  Google Scholar 

  94. Arya SK et al (2012) Recent advances in ZnO nanostructures and thin films for biosensor applications. Anal Chim Acta 737:1–21

    Article  CAS  PubMed  Google Scholar 

  95. Kang N et al (2016) Nanoparticle–nanofibrous membranes as scaffolds for flexible sweat sensors. ACS Sensors 1(8):1060–1069

    Article  CAS  Google Scholar 

  96. Sakihara S et al (2010) Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of Cushing’s syndrome. Endocr J 57(4):331–337

    Article  CAS  PubMed  Google Scholar 

  97. Kazory A (2010) Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol 106(5):694–700

    Article  CAS  PubMed  Google Scholar 

  98. D’Apolito M et al (2015) Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 239(2):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang Q, Wen X, Kong J (2020) Recent progress on uric acid detection: a review. Crit Rev Anal Chem 50(4):359–375

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y-X et al (2022) Boron-doped graphene quantum dots anchored to carbon nanotubes as noble metal-free electrocatalysts of uric acid for a wearable sweat sensor. ACS Applied Nano Materials 5(8):11100–11110

    Article  CAS  Google Scholar 

  101. Ehtesabi H, Kalji S-O, Movsesian L (2022) Smartphone-based wound dressings: a mini-review. Heliyon 8(7):e09876

  102. Ye X et al (2019) A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 15(48):1901673

    Article  CAS  Google Scholar 

  103. Yang P et al (2019) Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small 15(44):1902823

    Article  CAS  Google Scholar 

  104. Laysandra L et al (2021) Synergistic effect in a graphene quantum dot-enabled luminescent skinlike copolymer for long-term pH detection. ACS Appl Mater Interfaces 13(50):60413–60424

    Article  CAS  PubMed  Google Scholar 

  105. Yang W et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138

    Article  CAS  Google Scholar 

  106. Asadian E, Ghalkhani M, Shahrokhian S (2019) Electrochemical sensing based on carbon nanoparticles: a review. Sens Actuators, B Chem 293:183–209

    Article  CAS  Google Scholar 

  107. Ray S et al (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113(43):18546–18551

    Article  CAS  Google Scholar 

  108. Zhao A et al (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    Article  CAS  Google Scholar 

  109. Ehtesabi H, Kalji S-O, Ahadian MM (2023) Carbon nanomaterials in prodrug-based therapeutics. J Drug Deliv Sci Technol 88:104930

  110. Taherpour AA, Mousavi F (2018) Carbon nanomaterials for electroanalysis in pharmaceutical applications. Fullerens, Graphenes and Nanotubes. Elsevier, pp 169–225

    Chapter  Google Scholar 

  111. Wang HG et al (2017) Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv Mater 29(45):1703012

    Article  Google Scholar 

  112. Manickam P et al (2017) Fabric based wearable biosensor for continuous monitoring of steroids. ECS Trans 77(11):1841

    Article  CAS  Google Scholar 

  113. Allen JA, Murugesan D, Viswanathan C (2019) Circumferential growth of zinc oxide nanostructure anchored over carbon fabric and its photocatalytic performance towards p-nitrophenol. Superlattice Microstruct 125:159–167

    Article  CAS  Google Scholar 

  114. Georgakilas V et al (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  PubMed  Google Scholar 

  115. Ming H et al (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41(31):9526–9531

    Article  CAS  PubMed  Google Scholar 

  116. Huo F et al (2020) Preparation and biomedical applications of multicolor carbon dots: recent advances and future challenges. Part Part Syst Charact 37(4):1900489

    Article  Google Scholar 

  117. Hola K et al (2014) Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9(5):590–603

    Article  CAS  Google Scholar 

  118. Bao X et al (2018) In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Sci Appl 7(1):91

    Article  PubMed  Google Scholar 

  119. Ehtesabi H (2020) Carbon nanomaterials for salivary-based biosensors: a review. Mater Today Chem 17:100342

    Article  CAS  Google Scholar 

  120. Ehtesabi H (2020) Application of carbon nanomaterials in human virus detection. J Sci: Adv Mater Devices 5(4):436–450

    CAS  Google Scholar 

  121. Roushani M et al (2017) Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. J Mater Sci: Mater Electron 28:5135–5143

    CAS  Google Scholar 

  122. Roushani M, Mavaei M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. J Mol Catal A: Chem 409:102–109

    Article  CAS  Google Scholar 

  123. Fakhraie S et al (2021) In situ simultaneous chemical activation and exfoliation of carbon quantum dots for atmospheric adsorption of H2S and CO2 at room temperature. Appl Surf Sci 559:149892

    Article  CAS  Google Scholar 

  124. Hu C et al (2019) Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 48(8):2315–2337

    Article  CAS  PubMed  Google Scholar 

  125. Kipnusu WK et al (2020) Nonlinear optics to glucose sensing: multifunctional nitrogen and boron doped carbon dots with solid-state fluorescence in nanoporous silica films. Part Part Syst Charact 37(6):2000093

    Article  CAS  Google Scholar 

  126. Rezaei A, Ehtesabi H (2022) Fabrication of alginate/chitosan nanocomposite sponges using green synthesized carbon dots as potential wound dressing. Mater Today Chem 24:100910

    Article  CAS  Google Scholar 

  127. Ehtesabi H, Nasri R (2021) Carbon dot-based materials for wound healing applications. Adv Natl Sci: Nanosci Nanotechnol 12(2):025006

    CAS  Google Scholar 

  128. Shakiba-Marani R, Ehtesabi H (2023) A flexible and hemostatic chitosan, polyvinyl alcohol, carbon dot nanocomposite sponge for wound dressing application. Int J Biol Macromol 224:831–839

    Article  CAS  PubMed  Google Scholar 

  129. Bariya M et al (2018) Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12(7):6978–6987

    Article  CAS  PubMed  Google Scholar 

  130. Kurniawan D, Chiang W-H (2020) Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors. Carbon 167:675–684

    Article  CAS  Google Scholar 

  131. Ehtesabi H et al (2021) Smartphone-based portable device for rapid and sensitive pH detection by fluorescent carbon dots. Sens Actuators, A 332:113057

    Article  CAS  Google Scholar 

  132. Azad LM, Ehtesabi H, Rezaei A (2021) Smartphone-based fluorometer for pH detection using green synthesized carbon dots. Nano-Struct Nano-Objects 26:100722

    Article  CAS  Google Scholar 

  133. Hu Y et al (2017) Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain Chem Eng 5(6):4992–5000

    Article  CAS  Google Scholar 

  134. Li L-S, Xu L (2020) Highly fluorescent N, S, P tri-doped carbon dots for Cl− detection and their assistance of TiO2 as the catalyst in the degradation of methylene blue. J Photochem Photobiol, A 401:112772

    Article  CAS  Google Scholar 

  135. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  136. Robertson J (2004) Realistic applications of CNTs. Mater Today 7(10):46–52

    Article  CAS  Google Scholar 

  137. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis: Int J Devoted Fundam Pract Aspects Electroanalysis 15(9):753–772

    Article  CAS  Google Scholar 

  138. Xing Z et al (2018) Highly flexible printed carbon nanotube thin film transistors using cross-linked poly (4-vinylphenol) as the gate dielectric and application for photosenstive light-emitting diode circuit. Carbon 133:390–397

    Article  CAS  Google Scholar 

  139. Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  CAS  PubMed  Google Scholar 

  140. Besteman K et al (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Article  CAS  Google Scholar 

  141. Geier ML et al (2015) Solution-processed carbon nanotube thin-film complementary static random access memory. Nat Nanotechnol 10(11):944–948

    Article  CAS  PubMed  Google Scholar 

  142. Maji D et al (2015) Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications. Sci Rep 5(1):17776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu Q et al (2021) Preparation of nanostructured PDMS film as flexible immunosensor for cortisol analysis in human sweat. Anal Chim Acta 1184:339010

    Article  CAS  PubMed  Google Scholar 

  144. Claussen JC et al (2009) Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3(1):37–44

    Article  CAS  PubMed  Google Scholar 

  145. Park S-C et al (2021) Carbon nanotube-based ion-sensitive field-effect transistors with an on-chip reference electrode toward wearable sodium sensing. ACS Appl Electron Mater 3(6):2580–2588

    Article  CAS  Google Scholar 

  146. Bollella P, Gorton L (2018) Enzyme based amperometric biosensors. Curr Opin Electrochem 10:157–173

    Article  CAS  Google Scholar 

  147. Kim J et al (2018) Wearable bioelectronics: Enzyme-based body-worn electronic devices. Acc Chem Res 51(11):2820–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Milton RD, Minteer SD (2017) Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J R Soc Interface 14(131):20170253

    Article  PubMed  PubMed Central  Google Scholar 

  149. Monteiro T, Almeida MG (2019) Electrochemical enzyme biosensors revisited: Old solutions for new problems. Crit Rev Anal Chem 49(1):44–66

    Article  CAS  PubMed  Google Scholar 

  150. Prévoteau A, Mano N (2012) Oxygen reduction on redox mediators may affect glucose biosensors based on “wired” enzymes. Electrochim Acta 68:128–133

    Article  Google Scholar 

  151. Ito K et al (2019) Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Biosens Bioelectron 123:114–123

    Article  CAS  PubMed  Google Scholar 

  152. Mazurenko I et al (2018) Pore size effect of MgO-templated carbon on enzymatic H2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus. J Electroanal Chem 812:221–226

    Article  CAS  Google Scholar 

  153. Sakai K et al (2018) Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochim Acta 271:305–311

    Article  CAS  Google Scholar 

  154. Xia H-Q et al (2020) Mediator-free electron-transfer on patternable hierarchical meso/macro porous bienzyme interface for highly-sensitive sweat glucose and surface electromyography monitoring. Sens Actuators, B Chem 312:127962

    Article  CAS  Google Scholar 

  155. Hao J et al (2022) Photosensitive-stamp-inspired scalable fabrication strategy of wearable sensing arrays for noninvasive real-time sweat analysis. Anal Chem 94(10):4547–4555

    Article  CAS  PubMed  Google Scholar 

  156. Oh SY et al (2018) Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces 10(16):13729–13740

    Article  CAS  PubMed  Google Scholar 

  157. Kalji O et al (2020) Colloidal graphene oxide enhances the activity of a lipase and protects it from oxidative damage: insights from physicochemical and molecular dynamics investigations. J Colloid Interface Sci 567:285–299

    Article  CAS  PubMed  Google Scholar 

  158. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  159. Li W et al (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5(3):2264–2270

    Article  CAS  PubMed  Google Scholar 

  160. Fenzl C et al (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. Acs Sensors 2(5):616–620

    Article  CAS  PubMed  Google Scholar 

  161. Mao C et al (2021) Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. J Electroanal Chem 880:114800

    Article  CAS  Google Scholar 

  162. Zdrachek E, Bakker E (2021) Ion-to-electron capacitance of single-walled carbon nanotube layers before and after ion-selective membrane deposition. Microchim Acta 188:1–10

    Article  Google Scholar 

  163. Lyu Y et al (2020) Solid-contact ion-selective electrodes: response mechanisms, transducer materials and wearable sensors. Membranes 10(6):128

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yeung KK et al (2022) Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett 22(16):6647–6654

    Article  CAS  PubMed  Google Scholar 

  165. Prabhakaran A, Nayak P (2019) Surface engineering of laser-scribed graphene sensor enables non-enzymatic glucose detection in human body fluids. ACS Appl Nano Mater 3(1):391–398

    Article  Google Scholar 

  166. Sharma S et al (2020) Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine. Mater Lett 262:127150

    Article  CAS  Google Scholar 

  167. Marques AC et al (2020) Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl Nano Mater 3(3):2795–2803

    Article  CAS  Google Scholar 

  168. Choudhury S et al (2021) Potentiometric ion-selective sensors based on UV-ozone irradiated laser-induced graphene electrode. Electrochim Acta 387:138341

    Article  CAS  Google Scholar 

  169. Khan A, Winder M, Hossain G (2022) Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat. Biosens Bioelectron: X 10:100103

    CAS  Google Scholar 

  170. Xu M et al (2021) Reduced graphene oxide-coated silica nanospheres as flexible enzymatic biosensors for detection of glucose in sweat. ACS Appl Nano Mater 4(11):12442–12452

    Article  CAS  Google Scholar 

  171. Lu Q et al (2021) Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens Bioelectron 184:113229

    Article  CAS  PubMed  Google Scholar 

  172. Shu Y et al (2021) Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem 93(48):16222–16230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamide Ehtesabi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehtesabi, H., Kalji, SO. Carbon nanomaterials for sweat-based sensors: a review. Microchim Acta 191, 77 (2024). https://doi.org/10.1007/s00604-023-06162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06162-7

Keywords

Navigation