Skip to main content
Log in

A sensitive electrochemical sensor for glutathione based on specific recognition induced collapse of silver-contained metal organic frameworks

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor capable of detecting glutathione (GSH) with high sensitivity and selectivity was developed based on the unique novel electroactive silver-based metal organic framework (Ag-MOF). The Ag-MOF obtained by silver nitrate and 1,3,5-benzoic acid (H3BTC) was thoroughly characterized and was modified onto the electrode via facile drop-casting method. The electrochemical response of GSH on the Ag-MOF modified electrode showed a significant reduction in the current signal because the Ag-GSH complex had stronger specific affinity than Ag-H3BTC and resulted in the collapse of the Ag-MOF. This sensor demonstrated an extensive linear dynamic range of 0.1 nM-1 µM, along with the low detection limit of 0.018 nM. Additionally, it exhibited good reproducibility, stability, and resistance to interfering compounds. The Ag-MOF modified electrode demonstrated superior performance attributed to its rapid electron transfer rate, outstanding electrochemical redox activity, and specific recognition/competitive reaction. These factors improved both sensitivity and selectivity. The high anti-interference ability allowed for the selective detection of GSH in intricate surroundings. In the real sample testing, the RSD was lower than 3.1% and the recovery was between 98.1 and 103%. This research highlights the potential of Ag-MOFs in developing electrochemical sensors and their promising applications in determining GSH for food screening and early disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fang X, Chen XY, Liu Y, Li QJ, Zeng ZR, Maiyalagan T, Mao S (2022) Nanocomposites of zr(IV)-based metal-organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Appl Nano Mater 2:2367–2376. https://doi.org/10.1021/acsanm.9b00243

    Article  CAS  Google Scholar 

  2. Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ (2011) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041. https://doi.org/10.1021/jp209805c

    Article  CAS  Google Scholar 

  3. Liu YL, Yuan TN, Zhu JW, Qin Y, Jiang DC (2015) Polymer-multiwall carbon nantubes composites for durable all solid-contact H2PO4 selective electrodes. Sens Actuators B Chem 219:100–104. https://doi.org/10.1016/j.snb.2015.04.122

    Article  CAS  Google Scholar 

  4. Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373. https://doi.org/10.1016/j.ultsonch.2017.04

    Article  CAS  PubMed  Google Scholar 

  5. Dong Y, Sheng QL, Zheng JB, Tang HS (2014) A nonenzymatic reduced glutathione sensor based on Ni-Al LDHs/MWCNTs composites. Anal Methods 6:8598–8603. https://doi.org/10.1039/C4AY01702A

    Article  CAS  Google Scholar 

  6. Chang JF, Wang X, Wang J, Li HY, Li F (2019) Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple Tumor biomarkers. Anal Chem 91:3604–3610. https://doi.org/10.1021/acs.analchem.8b05599

    Article  CAS  PubMed  Google Scholar 

  7. Yan ZY, Wang F, Deng PY, Wang Y, Cai K, Chen YH, Wang ZH, Liu Y (2018) Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of au and pt loaded metal-organic frameworks nanocomposites. Biosens Bioelectron 109:132–138. https://doi.org/10.1016/j.bios.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Cao Y, Liu Q, Luo YL, Liu Y, Shi XF, Asiri AM, Li TS, Sun XP (2021) Co-MOF nanosheet arrays for efficient alkaline oxygen evolution electrocatalysis. ChemNanoMat 7:906–909. https://doi.org/10.1002/cnma.202100153

    Article  CAS  Google Scholar 

  9. Chang Y, Liu G, Li S, Liu L, Song QJ (2023) Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 1273:341540. https://doi.org/10.1016/j.aca.2023.341540

    Article  CAS  PubMed  Google Scholar 

  10. Chang Y, Lou JX, Yang LY, Liu MM, Xia N, Liu L (2022) Design and application of electrochemical sensors with metal-organic frameworks as the electrode materials or signal tags. Nanomaterials 12:3248. https://doi.org/10.3390/nano12183248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang GY, Ma YX, Chai HN, Yu K, Li YJ, Wang SS, Ma JP, Qu LJ, Tan WQ, Zhang XJ (2022) Porphyrinic metal-organic framework@alumina nanocomposite fluorescent probe: two-stage stimuli-responsive behavior and phosphate sensing. Sens Actuators B Chem 370:132395. https://doi.org/10.1016/j.snb.2022.132395

    Article  CAS  Google Scholar 

  12. Shalini SS, Balamurugan R, Velmathi S, Bose AC (2022) Systematic investigation on the electrochemical performance of pristine silver metal-organic framework as the efficient electrode material for supercapacitor application. Energy Fuels 36:7104–7114. https://doi.org/10.1021/acs.energyfuels.2c01034

    Article  CAS  Google Scholar 

  13. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. https://doi.org/10.1016/S0753-3322(03)00043-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. https://doi.org/10.1016/j.pathophys.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Liu J, Ma XR, Zuo P, Ye BC, Li YC (2016) Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated Leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors. Biosens Bioelectron 80:491–496. https://doi.org/10.1016/j.bios.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  16. Xie JW, Cheng D, Li PP, Xu ZJ, Zhu XH, Zhang YY, Li HT, Liu XY, Liu ML, Yao SZ (2021) Au/metal-organic framework nanocapsules for electrochemical determination of glutathione. ACS Appl Nano Mater 4:4853–4862. https://doi.org/10.1021/acsanm.1c00394

    Article  CAS  Google Scholar 

  17. Yue J, Mei Q, Wang PY, Miao P, Dong WF, Li L (2022) A yellow fluorescence probe for the detection of oxidized glutathione and biological imaging. ACS Appl Mater Interfaces 14:17119. https://doi.org/10.1021/acsami.2c01857

    Article  CAS  PubMed  Google Scholar 

  18. Gupta A, Verma NC, Khan S, Nandi CK (2016) An electroanalysis strategy for glutathione in cells based on the displacement reaction route using melamine-copper nanocomposites synthesized by the controlled supermolecular self-assembly. Biosens Bioelectron 81:465–472. https://doi.org/10.1016/j.bios.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  19. Xu ZJ, Li PP, Liu X, Zhu XH, Liu ML, Zhang YY, Yao SZ (2022) Dual-signal intrinsic self-calibration ratio electrochemical sensor for glutathione based on silver nanoparticle decorated prussian blue analog. Electrochim Acta 434:141273. https://doi.org/10.1016/j.electacta.2022.141273

    Article  CAS  Google Scholar 

  20. Xu YL, Niu XY, Zhang HJ, Xu LF, Zhao SG, Chen HL, Chen XG (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNGD)-Hg2+ chemosensor. J Agric Food Chem 63:1747–1755. https://doi.org/10.1021/jf505759z

    Article  CAS  PubMed  Google Scholar 

  21. Song HH, Wang N, Shi XT, Meng H, Han YD, Wu JB, Xu JL, Xu Y, Sun T, Zhang X (2020) Photocatalytic active silver organic framework: Ag(I)-MOF and its hybrids with silver cyanamide. Appl Organomet Chem 34:5972–5984. https://doi.org/10.1002/aoc.5972

    Article  CAS  Google Scholar 

  22. Zhao XY, Gong LG, Wang CX, Wang CM, Yu K, Zhou BB (2020) A facile grinding method for the synthesis of 3D ag metal-organic frameworks (MOFs) containing Ag6MO7O24 for high-performance supercapacitors. Chemistry 26:4613–4619. https://doi.org/10.1002/chem.201905689

    Article  CAS  PubMed  Google Scholar 

  23. Xia N, Liu L, Chang Y, Hao YQ, Wang XJ (2016) 4-Mercaptophenylboronic acid-induced in situ formation of silver nanoparticle aggregates as labels on an electrode surface. Electrochem Commun 74:28–32. https://doi.org/10.1016/j.elecom.2016.11.013

    Article  CAS  Google Scholar 

  24. Cheng CM, Zhang RL, Wang JH, Zhang Y, Xiong SS, Huang Y, Yang M (2020) Porphyrinic metal-organic framework nanorod-based dual-modal nanoprobe for sensing and bioimaging of phosphate. ACS Appl Mater Interfaces 12:26391–26398. https://doi.org/10.1021/acsami.0c06057

    Article  CAS  PubMed  Google Scholar 

  25. Wan YQ, Hua Y, Liu M, Li S, Yin MY, Lv XX, Wang H (2019) Highly selective electroanalysis for chloride ions by conductance signal outputs of solid-state AgCl electrochemistry using silver-melamine nanowires. Sens Actuators B Chem 300:127058–127064. https://doi.org/10.1016/j.snb.2019.127058

    Article  CAS  Google Scholar 

  26. Cheng D, Li PP, Xu ZJ, Liu X, Zhang YY, Liu ML, Yao SZ (2022) Signal on-off electrochemical sensor for glutathione based on a AuCu-decorated Zr-containing metal-organic framework via solid-state electrochemistry of cuprous chloride. ACS Sens 7:2465–2474. https://doi.org/10.1021/acssensors.2c01221

    Article  CAS  PubMed  Google Scholar 

  27. Kumbhar S, Jana S, Anoop A, Waller MP (2015) Cooperativity in bimetallic glutathione complexes. J Mol Graph Model 62:1–10. https://doi.org/10.1016/j.jmgm.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  28. Moya PMO, Alfaro MM, Kazemi R, Apuche-Aviles MA, Griveau S, Bedioui F, Granados SG (2017) Simultaneous electrochemical speciation of oxidized and reduced glutathione. Redox profiling of oxidative stress in biological fluids with a modified carbon electrode. Anal Chem 89:10726–10733. https://doi.org/10.1021/acs.analchem.7b01690

    Article  CAS  Google Scholar 

  29. Liu QY, Bao J, Yang M, Wang XJ, Lan SY, Hou CJ, Wang YZ, Fa HB (2018) A core-shell MWCNT@rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione. Sens Actuators B Chem 274:433–440. https://doi.org/10.1016/j.snb.2018.07.146

    Article  CAS  Google Scholar 

  30. Wang W, Chen JD, Zhou ZZ, Zhan SS, Xing ZY, Liu HY, Zhang LN (2022) Ultrasensitive and selective detection of glutathione by ammonium carbamate-gold platinum nanoparticles-based electrochemical sensor. Life 12:1142–1151. https://doi.org/10.3390/life12081142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu BH, Ma C, Li Y, Kou YX, Lu JJ, Jiang XM, Tan L (2017) Voltammetric determination of reduced glutathione using poly(thionine) as a mediator in the presence of Fenton-type reaction. Talanta 170:399–405. https://doi.org/10.1016/j.talanta.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoud AM, Alyami BA, Mahnashi MH, Alshareef FM, AlQahtani YS, El-Wekil MM (2023) Facile fabrication of a superior electrochemical sensor with anti-fouling properties for sensitive and selective determination of glutathione. Microchem J 187:108419–108425. https://doi.org/10.1016/j.microc.2023.108419

    Article  CAS  Google Scholar 

  33. Kaur B, Srivastava R, Satpati B (2015) A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Adv 5:95028–95037. https://doi.org/10.1039/C5RA19249H

    Article  CAS  Google Scholar 

  34. Liu TT, Zhou M, Pu YX, Liu LQ, Li FF, Li MS, Zhang MX (2021) Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens Actuators B Chem 342:130047–130054. https://doi.org/10.1016/j.snb.2021.130047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (22274047, 21974042, 21645008), the Scientific Research Fund of Hunan Provincial Education Department (18A010), the Science and Technology Department of Hunan Province (2021JJ30012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Chen or Meiling Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, Z., Li, P. et al. A sensitive electrochemical sensor for glutathione based on specific recognition induced collapse of silver-contained metal organic frameworks. Microchim Acta 191, 49 (2024). https://doi.org/10.1007/s00604-023-06152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06152-9

Keywords

Navigation