Skip to main content
Log in

Modular coupling MOF nanozyme with natural enzyme on hollow fiber membrane for rapid and reusable detection of H2O2 and glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel strategy based on gradient porous hollow fiber membrane (GPF) is proposed for the modular assembly of enzyme-nanozyme cascade systems. The porous structure of GPF provided sufficient specific surface area, while the gradient structure effectively minimized the leaching of enzymes and nanozymes. To enhance stability, we prepared and immobilized metal–organic framework (MOF) nanozymes, resulting in the fabrication of GPF-MOF with excellent stability and reusability for colorimetric H2O2 detection. To improve specificity and expand the detection range, micro-crosslinked natural enzymes were modularly assembled, using glucose oxidase as the model enzyme. The assembled system, GPF-mGOx@MOF, achieved a low detection limit of 0.009 mM and a linear range of 0.2 to 11 mM. The sensor retained 87.2% and 80.7% of initial activity after being stored for 49 days and 9 recycles, respectively. Additionally, the reliability of the biosensor was validated through glucose determination of human blood and urine samples, yielding comparable results to a commercial glucose meter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang X, Wang H, Yuan R, Chai Y (2018) Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2 released from live cells. Anal Chem 90:8462–8469. https://doi.org/10.1021/acs.analchem.8b01168

    Article  CAS  PubMed  Google Scholar 

  2. Zhao J, Liu Y, Zhu L, Li J, Liu Y, Luo J, Xie T, Chen D (2023) Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. J Pharm Anal. https://doi.org/10.1016/j.jpha.2023.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai Q, Geng X, He J, Sun Y, Li Z (2019) Highly fluorescent organic polymers for quenchometric determination of hydrogen peroxide and enzymatic determination of glucose. Microchim Acta 186:160. https://doi.org/10.1007/s00604-019-3262-7

    Article  CAS  Google Scholar 

  4. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60. https://doi.org/10.1039/C5QI00240K

    Article  ADS  CAS  Google Scholar 

  6. Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H (2021) Advances in metal-organic framework-based nanozymes and their applications. Coord Chem Rev 449:214216. https://doi.org/10.1016/j.ccr.2021.214216

    Article  CAS  Google Scholar 

  7. Cai Q, Meng H, Liu Y, Li Z (2019) Fluorometric determination of glucose based on a redox reaction between glucose and aminopropyltriethoxysilane and in-situ formation of blue-green emitting silicon nanodots. Microchim Acta 186:78. https://doi.org/10.1007/s00604-018-3189-4

    Article  CAS  Google Scholar 

  8. Chen J, Ge J, Zhang L, Li Z, Qu L (2016) Poly(styrene sulfonate) and Pt bifunctionalized graphene nanosheets as an artificial enzyme to construct a colorimetric chemosensor for highly sensitive glucose detection. Sens Actuators B Chem 233:438–444. https://doi.org/10.1016/j.snb.2016.04.118

    Article  ADS  CAS  Google Scholar 

  9. Yang Y, Huang X, Sheng C, Pan Y, Huang Y, Wang X (2022) In-situ formation of MOFs derivatives CoSe2/Ni3Se4 nanosheets on MXene nanosheets for hybrid supercapacitor with enhanced electrochemical performance. J Alloys Compd 920:165908. https://doi.org/10.1016/j.jallcom.2022.165908

    Article  CAS  Google Scholar 

  10. Park JS, Choi JS, Han DK (2022) Platinum nanozyme-hydrogel composite (PtNZHG)-impregnated cascade sensing system for one-step glucose detection in serum, urine, and saliva. Sens Actuators B Chem 359:131585. https://doi.org/10.1016/j.snb.2022.131585

    Article  CAS  Google Scholar 

  11. Zhang Y, Wang B, Wang P, Ju X, Zhang M, Xie R, Liu Z, Wang W, Chu LY (2022) Microfluidic fabrication of hydrogel microparticles with MOF-armoured multi-enzymes for cascade biocatalytic reactions. React Chem Eng 7:275–283. https://doi.org/10.1039/D1RE00257K

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang F, Lu Z, Xu Q, Hou C, Wang Z (2020) Coupling two sequential biocatalysts with close proximity into metal-organic frameworks for enhanced cascade catalysis. ACS Appl Mater Inter 12:25565–25571. https://doi.org/10.1021/acsami.0c04317

    Article  CAS  Google Scholar 

  13. An P, Hu D, Han Y, Meng H, Zhang X (2023) Glucose oxidase immobilization on Hemin@PCN-222 (Mn): integrated biomimetic and bioenzyme activities in cascade catalytic process. Sep Purif Technol 307:122832. https://doi.org/10.1016/j.seppur.2022.122832

    Article  CAS  Google Scholar 

  14. Li SF, Chen Y, Wang YS, Mo HL, Zang SQ (2022) Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Sci China Chem 65:1122–1128. https://doi.org/10.1007/s11426-022-1254-5

    Article  CAS  Google Scholar 

  15. Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, Wang Y, Niu Z (2014) Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6:255–262. https://doi.org/10.1039/C3NR04425D

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Liu M, Mou J, Xu X, Zhang F, Xia J, Wang Z (2020) High-efficiency artificial enzyme cascade bio-platform based on MOF-derived bimetal nanocomposite for biosensing. Talanta 220:121374. https://doi.org/10.1016/j.talanta.2020.121374

    Article  CAS  PubMed  Google Scholar 

  17. Qi L, Qiao J (2021) Design of switchable enzyme carriers based on stimuli-responsive porous polymer membranes for bioapplications. ACS Appl Bio Mater 4:4706–4719. https://doi.org/10.1021/acsabm.1c00338

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Wei C, Chen D, Xu Z, Huang X (2023) Construction of inorganic-organic cascade enzymes biosensor based on gradient polysulfone hollow fiber membrane for glucose detection. Sens Actuators B Chem 385:133630. https://doi.org/10.1016/j.snb.2023.133630

    Article  CAS  Google Scholar 

  19. Bolivar JM, Woodley JM, Fernandez-Lafuente R (2022) Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 51:6251–6290. https://doi.org/10.1039/D2CS00083K

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Luan Q, Li Y, Wang J, Bao Y, Tang H, Huang F (2022) Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers. Int J Biol Macromol 199:61–68. https://doi.org/10.1016/j.ijbiomac.2021.12.069

    Article  CAS  PubMed  Google Scholar 

  21. Huang H, Li L, Jiang M, Wei C, Ma S, Chen D, Tong W, Huang X (2020) Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes. Biosens Bioelectron 152:121001. https://doi.org/10.1016/j.bios.2019.112001

    Article  CAS  Google Scholar 

  22. Li T, Li J, Pang Q, Ma L, Tong W, Gao C (2019) Construction of microreactors for cascade reaction and their potential applications as antibacterial agents. ACS Appl Mater Interfaces 11:6789–6795. https://doi.org/10.1021/acsami.8b20069

    Article  CAS  PubMed  Google Scholar 

  23. Xiong Y, Georgieva R, Steffen A, Smuda K, Baumler H (2018) Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure. J Colloid Interface Sci 514:156–164. https://doi.org/10.1016/j.jcis.2017.12.030

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Park J, Jiang Q, Feng D, Mao L, Zhou HC (2016) Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138:3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J, Ma Z, Hong X, Wu HM, Ma SY, Li Y, Chen DJ, Yu HY, Huang XJ (2019) Top-down strategy of implantable biosensor using adaptable porous hollow fibrous membrane. ACS Sens 4:931–937. https://doi.org/10.1021/acssensors.9b00035

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Zhang X, Wei C, Wang C, Jiang M, Hong X, Xu Z, Chen D, Huang X (2021) Modular assembly of enzyme loaded nanoparticles in 3D hollow fiber electrode for electrochemical sensing. Chem Eng J 421:129721. https://doi.org/10.1016/j.cej.2021.129721

    Article  CAS  Google Scholar 

  27. Wu H, Li T, Bao Y, Zhang X, Wang C, Wei C, Xu Z, Tong W, Chen D, Huang X (2021) MOF-enzyme hybrid nanosystem decorated 3D hollow fiber membranes for in-situ blood separation and biosensing array. Biosens Bioelectron 190:113413. https://doi.org/10.1016/j.bios.2021.113413

    Article  CAS  PubMed  Google Scholar 

  28. Ma Z, Luo Y, Zhu Q, Jiang M, Pan M, Xie T, Huang X, Chen D (2020) In-situ monitoring of glucose metabolism in cancer cell microenvironments based on hollow fiber structure. Biosens Bioelectron 162:112261. https://doi.org/10.1016/j.bios.2020.112261

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M (2019) Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small 15:1900133. https://doi.org/10.1002/smll.201900133

    Article  CAS  Google Scholar 

  30. Chi J, Guo M, Zhang C, Zhang Y, Ai S, Hou J, Wu P, Li X (2020) Glucose oxidase and Au nanocluster co-encapsulated metal-organic frameworks as a sensitive colorimetric sensor for glucose based on a cascade reaction. New J Chem 44:13344–13349. https://doi.org/10.1039/C9NJ06339K

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhou Z, Wen F, Tan J, Peng T, Luo B, Wang H, Yin S (2018) A flower-like MoS2-decorated MgFe2O4 nanocomposite: mimicking peroxidase and colorimetric detection of H2O2 and glucose. Sens Actuators B Chem 275:155–162. https://doi.org/10.1016/j.snb.2018.08.051

    Article  CAS  Google Scholar 

  32. Heller A (1999) Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153–175. https://doi.org/10.1146/annurev.bioeng.1.1.153

    Article  CAS  PubMed  Google Scholar 

  33. Schmidtke DW, Freeland AC, Heller A, Bonnecaze RT (1998) Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proc Natl Acad Sci 95:294–299. https://doi.org/10.1073/pnas.95.1.294

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mu S, Deng Y, Xing Z, Rong X, He C, Cao S, Ma T, Cheng C, Wang Y (2022) Ir cluster-anchored MOFs as peroxidase-mimetic nanoreactors for diagnosing hydrogen peroxide-related biomarkers. ACS Appl Mater Inter 14:56635–56643. https://doi.org/10.1021/acsami.2c18676

    Article  CAS  Google Scholar 

  35. Li T, Hu P, Li J, Huang P, Tong W, Gao C (2019) Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf A Physicochem Eng Asp 577:456–463. https://doi.org/10.1016/j.colsurfa.2019.06.012

    Article  CAS  Google Scholar 

  36. Liu Q, Chen P, Xu Z, Chen M, Ding Y, Yue K, Xu J (2017) A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens Actuators B Chem 251:339–348. https://doi.org/10.1016/j.snb.2017.05.069

    Article  CAS  Google Scholar 

  37. Zhu N, Gu L, Wang J, Li X, Liang G, Zhou J, Zhang Z (2019) Novel and sensitive chemiluminescence sensors based on 2D-MOF nanosheets for one-step detection of glucose in human urine. J Phys Chem C 123:9388–9393. https://doi.org/10.1016/j.snb.2017.05.069

    Article  CAS  Google Scholar 

  38. Wang Q, Chen M, Xiong C, Zhu X, Chen C, Zhou F, Dong Y, Wang Y, Xu J, Li Y, Liu J, Zhang H, Ye B, Zhou H, Wu Y (2022) Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens Bioelectron 196:113695. https://doi.org/10.1016/j.bios.2021.113695

    Article  CAS  PubMed  Google Scholar 

  39. Shi L, Yang L, Zhang H, Chang K, Zhao G, Kako T, Ye J (2018) Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl Catal B 224:60–68. https://doi.org/10.1016/j.apcatb.2017.10.033

    Article  CAS  Google Scholar 

  40. Zhu N, Liu C, Liu R, Niu X, Xiong D, Wang K, Yin D, Zhang Z (2022) Biomimic nanozymes with tunable peroxidase-like activity based on the confinement effect of metal-organic frameworks (MOFs) for biosensing. Anal Chem 94:4821–4830. https://doi.org/10.1021/acs.analchem.2c00058

    Article  CAS  PubMed  Google Scholar 

  41. Yu K, Li M, Chai H, Liu Q, Hai X, Tian M, Qu L, Xu T, Zhang G, Zhang X (2023) MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells. Chem Eng J 451:138321. https://doi.org/10.1016/j.cej.2022.138321

    Article  CAS  Google Scholar 

  42. Chen Y, Sun X, Biswas S, Xie Y, Wang Y, Hu X (2019) Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens Bioelectron 141:111470. https://doi.org/10.1016/j.bios.2019.111470

    Article  CAS  PubMed  Google Scholar 

  43. Wu H, Ma Z, Wei C, Jiang M, Hong X, Li Y, Chen D, Huang X (2020) Three-dimensional microporous hollow fiber membrane microfluidic device integrated with selective separation and capillary self-driven for point-of-care testing. Anal Chem 92:6358–6365. https://doi.org/10.1021/acs.analchem.9b05342

    Article  CAS  PubMed  Google Scholar 

  44. Karim MN, Anderson SR, Singh S, Ramanathan R, Bansal V (2018) Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens Bioelectron 110:8–15. https://doi.org/10.1016/j.bios.2018.03.025

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by Key Regional Innovation Program of National Natural Science Foundation of China (No. U21A20300) and National Natural Science Foundation of China (Grant No. 22075242 and 52103271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenjie Wei, Dajing Chen or Xiaojun Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9056 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Wei, C., Bao, Y. et al. Modular coupling MOF nanozyme with natural enzyme on hollow fiber membrane for rapid and reusable detection of H2O2 and glucose. Microchim Acta 191, 107 (2024). https://doi.org/10.1007/s00604-023-06150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06150-x

Keywords

Navigation