Skip to main content
Log in

A photoelectrochemical aptasensing platform assembled at the heterojunction interface of Cu3BiS3 sensitized CuV2O6 for bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The interaction between the sensitive interfaces of photoelectrochemical (PEC) semiconductor nanomaterials and microscopic matter creates endless potential for the efficient detection of endocrine disruptor. This work presents the development of a high-efficiency PEC aptasensor for bisphenol A (BPA) monitoring based on Cu3BiS3 sensitized CuV2O6 nanocomposites with exceptional visible-light PEC activity. We implemented the integration of Cu3BiS3 nanosheet photosensitizer to sensitize the CuV2O6 nanowire structure that was synthesized utilizing a facile hydrothermal approach. The band gap alignment between Cu3BiS3 and CuV2O6 facilitated enduring PEC response yielding an efficient interfacial structure. The surface of the CuV2O6/Cu3BiS3 electrode was modified with BPA aptamer, enabling specific binding with BPA and precise quantification of its content. The developed aptamer sensors possess a wide detection range of 5.00 × 10−1 to 5.00 × 104 ng/mL, and a low detection limit of 1.60 × 10−1 ng/mL (at S/N = 3). After undergoing 20 testing cycles and enduring long-term storage, the sensor maintained its stability and showcased excellent repeatability and reproducibility. This study presents a promising methodology for the detection of BPA in environmental settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data are available from the corresponding author on reasonable request.

References

  1. Kaur B, Srivastava R, Satpati B (2015) Silver nanoparticle decorated polyaniline-zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane. RSC Adv 71:557657–557665

    Google Scholar 

  2. Ozyildiz G, Olmez-Hanci T, Arslan-Alaton I (2019) Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process. Appl Catal B 254:135–144

    Article  CAS  Google Scholar 

  3. Verma D, Yadav A, Mukherjee M, Solanki P (2021) Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: an endocrine disruptor. J Environ Chem Eng 910:550

    Google Scholar 

  4. Vandenberg L, Maffini M, Sonnenschein C, Rubin B, Soto A (2009) Bisphenol-A and the great divide: a r4.eview of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karrer C, Boer W, Delmaar C, Cai Y, Crépet A, Hungerbühler K (2019) Linking probabilistic exposure and pharmacokinetic modeling to assess the cumulative risk from the bisphenols BPA, BPS, BPF, and BPAF for Europeans. Environ Sci Technol 53:9181–9191

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jiang D, Du X, Zhou L, Li H, Wang K (2018) TiO2 nanoparticles embedded in borocarbonitrides nanosheets for sensitive and selective photoelectrochemical aptasensing of bisphenol A. J Electroanal Chem 818:191–197

    Article  CAS  Google Scholar 

  7. Wang Y, Liang Y, Zhang S, Wang T, Zhuang X, Tian C (2021) Enhanced electrochemical sensor based on gold nanoparticles and MoS2 nanoflowers decorated ionic liquid-functionalized graphene for sensitive detection of bisphenol A in environmental water. Microchem J 161:105769

    Article  CAS  Google Scholar 

  8. Yang H, Wang B, Liu J, Cheng J, Yu L, Yu J (2020) Sensitive and selective detection of bisphenol compounds in a fluorescent metal-organic framework. Sens Actuators B Chem 314:128048

    Article  CAS  Google Scholar 

  9. Zou J, Liu Z, Guo Y, Dong C (2017) Electrochemical sensor for the facile detection of trace amounts of bisphenol A based on cyclodextrin-functionalized graphene/platinum nanoparticles. Anal Methods 9:134–140

    Article  CAS  Google Scholar 

  10. Huang C, Wu Y, Chen J, Han Z, Wang J, Pan H, Du M (2012) Synthesis and electrocatalytic activity of 3Au-1Pd alloy nanoparticles/graphene composite for bisphenol A detection. Electroanalysis 24(6):1416

    Article  CAS  Google Scholar 

  11. Lu B, Liu M, Shi H, Huang X, Zhao G (2013) A novel photoelectrochemical sensor for bisphenol a with high sensitivity and selectivity based on surface molecularly imprinted polypyrrole modified TiO2 nanotubes. Electroanalysis 25(3):771–779

    Article  CAS  Google Scholar 

  12. Yue Z, Lisdat F, Parak W, Hickey S, Tu L, Sabir N (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5:2800–2814

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Shan S, Ma Z, Wan L, Xu J, Chen H (2013) Acetylcholine esterase antibodies on BiOI nanoflakes/TiO2 nanoparticles electrode: a case of application for general photoelectrochemical enzymatic analysis. Anal Chem 85:11686–11690

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Xu Y, Xu D, Chen L, Qiu X, Zhu Y (2022) Graphitic carbon nitride for photoelectrochemical detection of environmental pollutants. ACS Est Eng 2:140–157

    Article  CAS  Google Scholar 

  15. Zhao W, Xu J, Chen H (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44:729–741

    Article  CAS  PubMed  Google Scholar 

  16. Mao L, Ji K, Yao L, Xue X, Wen W, Zhang X (2019) Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosens Bioelectron 12757:63

    Google Scholar 

  17. Peng J, Huang Q, Liu Y, Liu P, Zhang C (2019) Photoelectrochemical sensor based on composite of cdte and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sens Actuators B Chem 294:157–165

    Article  CAS  Google Scholar 

  18. Kesavan G, Vinothkumar V, Chen S (2021) Sonochemical synthesis of copper vanadate nanoparticles for the highly selective voltammetric detection of antibiotic drug ornidazole. J Alloy Compd 867:159019

    Article  CAS  Google Scholar 

  19. Zhou L, Yan Q, Yu J, Jones R, Becerra-Stasiewicz N, Suram S (2016) Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. Phys Chem Chem Phys 18:9349–9352

    Article  CAS  PubMed  Google Scholar 

  20. Sivakumar V, Suresh R, Giribabu K, Manigandan R, Munusamy S, Kumar S (2014) Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property. J Mater Sci Mater Electron 25:1485–1491

    Article  CAS  Google Scholar 

  21. Seabold J, Neale N (2015) All first row transition metal oxide photoanode for water splitting based on Cu3V2O8. Chem Mater 27:1005–1013

    Article  CAS  Google Scholar 

  22. Morcoso D, Franch A, Cardona I, Gimenez S (2017) Chromium doped copper vanadate photoanodes for water splitting. Catal Today 290:65–72

    Article  Google Scholar 

  23. Manimozhi T, Archana J, Navaneethan M, Ramamurthi K (2019) Shape-controlled synthesis of AgBiS2 nano-/microstructures using PEG-assisted facile solvothermal method and their functional properties. Appl Surf Sci 487:664–673

    Article  ADS  CAS  Google Scholar 

  24. Hussain A, Luo J, Fan P, Liang G, Su Z, Ahmed R (2020) P-type Cu3BiS3 thin films for solar cell absorber layer via one stage thermal evaporation. Appl Surf Sci 505:144597

    Article  CAS  Google Scholar 

  25. Gassoumi A, Musa M, Alfaify S, Nasr T, Bouarissa N (2017) The investigation of crystal structure, elastic and optoelectronic properties of CuSbS2 and CuSbS2 compounds for photovoltaic applications. J Alloy Compd 725:181–189

    Article  CAS  Google Scholar 

  26. HuangD LL, Wang K, Li L, Feng K, Jiang F (2021) Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nat Commun 12:3795

    Article  ADS  Google Scholar 

  27. Yang M, Chen Y, Yan P, Dong J, Duan W, Xu L, Li H (2021) A photoelectrochemical aptasensor of ciprofloxacin based on Bi24O31Cl10/BiOCl heterojunction. Microchim Acta 188:289

    Article  CAS  Google Scholar 

  28. Kamimura S, Beppu N, Sasaki Y, Tsubota T, Ohno T (2017) Platinum and indium sulfide-modified Cu3BiS3 photocathode for photoelectrochemical hydrogen evolution. J Mater Chem A 5:10450–10456

    Article  CAS  Google Scholar 

  29. Jansi Rani B, Ravi G, Yuvakkumar R, Praveen Kumar M, Ravichandran S, Velauthapillai D (2020) Photoelectrochemical activity of copper vanadate nanostructures. Mater Lett 274:127996

    Article  CAS  Google Scholar 

  30. Martínez J, Díaz D, Herrera D, Rodríguez F, Pal M (2021) Theoretical evaluation of emerging Cd-free Cu3BiS3 based solar cells using experimental data of chemically deposited Cu3BiS3 thin films. J Alloy Compd 867:159156

    Article  Google Scholar 

  31. Dong B, Sun T, Jiang X, Guo P, Yang G, Wang F (2021) Self-passivated CuV2O6 as a universal photoelectrode material for reliable and accurate photoelectrochemical sensing. Chem Commun 57:7402–7405

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 22274062, 22206056); the Natural Science Foundation of Shandong Provincial (No. ZR2022QB117, No. ZR2020QB097, No. ZR2020QB072); the Science and Technology Program of the University of Jinan (No. XBS2108); and the Special Foundation for Taishan Scholar Professorship of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejing Liu or Qin Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 482 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Xu, R., Xu, K. et al. A photoelectrochemical aptasensing platform assembled at the heterojunction interface of Cu3BiS3 sensitized CuV2O6 for bisphenol A. Microchim Acta 191, 89 (2024). https://doi.org/10.1007/s00604-023-06144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06144-9

Keywords

Navigation