Skip to main content
Log in

Alanine aminotransferase electrochemical sensor based on graphene@MXene composite nanomaterials

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene@MXene composite nanomaterials were utilized to construct an electrochemical sensor for alanine aminotransferase (ALT) detection. The combination of graphene nanosheets with MXene avoids the self-stacking of MXene and graphene, and broadens the charge transfer channel. In addition, the composite nanomaterial provides increased loading sites for pyruvate oxidase. The principle of ALT detection is a two-step enzymatic reaction. l-Alanine was initially transferred to pyruvate catalyzed by ALT. The formed pyruvate was then oxidized by pyruvate oxidase, generating H2O2. Through the detection of the generated H2O2, ALT activity was measured. The linear range of the sensor to ALT was from 5 to 400 U·L−1 with a detection limit of 0.16 U·L−1 (S/N = 3). For real sample analysis, the spiked recovery test results of ALT in serum samples were between 96.89 and 103.93% with RSD < 5%, confirming the reliability of the sensor testing results and potential clinical application of the sensor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available on request.

References

  1. Huang P, Liu JW (2022) Signaling kinetics of DNA and aptamer biosensors revealing graphene oxide surface heterogeneity. J Anal Test 6:20–27

    Article  Google Scholar 

  2. Farjadian F, Abbaspour S, Sadatlu MAA et al (2020) Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: a review [J]. ChemistrySelect 5(33):10200–10219

    Article  CAS  Google Scholar 

  3. Zhan L, Li CM, Gao PF, Huang CZ (2021) AuNPs/graphene hybrids-based enzyme-free plasmonic immunoassay for respiratory syncytial virus detection. J Anal Test 5:203–209

    Article  Google Scholar 

  4. Nag A, Mitra A (2018) Subhas Chandra Mukhopadhyay, Graphene and its sensor-based applications: a review. Sens Actuator Phys 270:177–194

    Article  CAS  Google Scholar 

  5. Lou X, Qiu Z, Wan Q et al (2014) Graphene nanoplatelets and horseradish peroxidase based biosensor [J]. Physica Status Solidi (a) 211(12):2795–2800

    Article  Google Scholar 

  6. Wu X, Mu F, Wang Y et al (2018) Graphene and graphene-based nanomaterials for DNA detection: a review [J]. Molecules 23(8):2050

    Article  PubMed  PubMed Central  Google Scholar 

  7. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv Mater 23(37):4248–4253

    Article  CAS  PubMed  Google Scholar 

  8. Zeng R, Wang W, Chen M et al (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor [J]. Nano Energy 82:105711

    Article  CAS  Google Scholar 

  9. Lu L, Han X, Lin J et al (2021) Ultrasensitive fluorometric biosensor based onTi3C2 MXenes with Hg2+-triggered exonucleaseIII-assisted recycling amplification. Analyst 146:2664–2669

    Article  CAS  PubMed  Google Scholar 

  10. Gu H, Xing Y, Xiong P et al (2019) Three-dimensional porous Ti3C2Tx MXene–graphene hybrid films for glucose biosensing [J]. ACS App Nano Mater 2(10):6537–6545

    Article  CAS  Google Scholar 

  11. Yan J, Ren CE, Maleski K et al (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance [J]. Adv Funct Mater 27(30):1701264

    Article  Google Scholar 

  12. Mostafavi E, Iravani S (2022) MXene-graphene composites: a perspective on biomedical potentials [J]. Nano-Micro Letter 14(1):130

    Article  CAS  Google Scholar 

  13. Ghidiu M, Lukatskaya MR, Zhao MQ et al (2014) Conductive two-dimensional titanium carbide clay with high volumetric capacitance [J]. Nature 516(7529):78–81

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Tong P, Huang L et al (2019) Ti3C2 MXene nanosheet-based capacitance immunoassay with tyramine-enzyme repeats to detect prostate-specific antigen on interdigitated micro-comb electrode [J]. Electrochim Acta 319:475–381

    Article  Google Scholar 

  15. Cai G, Yu Z, Tong P, Tang D (2019) Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone [J]. Nanoscale 11:15659–15667

    Article  CAS  PubMed  Google Scholar 

  16. Yu Z, Tang J, Gong H et al (2023) Enzyme-encapsulated protein trap engineered metal–organic framework-derived biomineral probes for non-invasive prostate cancer surveillance [J]. Adv Funct Mater 33:2301457

    Article  CAS  Google Scholar 

  17. Zeng R, Huang Z, Wang Y, Tang D (2020) Enzyme-encapsulated DNA hydrogel for highly efficient electrochemical sensing glucose [J]. ChemElectroChem 7:1537–1541

    Article  CAS  Google Scholar 

  18. Moed S, Zaman MH (2019) A quantitative electrochemical assay for liver injury [J]. Biosensor Bioelectron 131:74–78

    Article  CAS  Google Scholar 

  19. Jamal M, Worsfold O, Mccormac T et al (2009) A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT) [J]. Biosensor Bioelectron 24(9):2926–2930

    Article  CAS  Google Scholar 

  20. Han YD, Song SY, Lee JH et al (2011) Multienzyme-modified biosensing surface for the electrochemical analysis of aspartate transaminase and alanine transaminase in human plasma [J]. Anal Bioanal Chem 400(3):797–805

    Article  CAS  PubMed  Google Scholar 

  21. Thuy TN, Tseng TTC (2016) A Micro-Platinum wire biosensor for fast and selective detection of alanine aminotransferase [J]. Sensors 16(6):767

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang KS, Chang CK, Chou SF et al (2007) Sequential measurement of aminotransferase activities by amperometric biosensors [J]. Biosensor Bioelectron 22(12):2914–2920

    Article  CAS  Google Scholar 

  23. Samy MA, Abdel-Tawab MA, Abdel-Ghani NT, Nashar RM (2023) Application of molecularly imprinted microelectrode as a promising point-of-care biosensor for alanine aminotransferase enzyme. Chemosensors 11:262

    Article  CAS  Google Scholar 

  24. Lai W, Shi Y, Zhong J, Zhou X, Yang Y, Chen Z, Zhang C (2023) A dry chemistry-based electrochemiluminescence device for point-of-care testing of alanine transaminase. Talanta 256:124287

Download references

Funding

The authors are thankful for the support of this work by the National Natural Science Foundation of China (Grant No.22174163) and the Hunan Provincial Science and Technology Plan Project, China (No. 2019TP1001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Ting Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, C., Quan, L., Wen, Q. et al. Alanine aminotransferase electrochemical sensor based on graphene@MXene composite nanomaterials. Microchim Acta 191, 45 (2024). https://doi.org/10.1007/s00604-023-06131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06131-0

Keywords

Navigation