Skip to main content
Log in

A liquid crystal–based biosensor for sensitive detection of tumor necrosis factor-alpha

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-alpha (TNF-α) is a cytokine secreted by the macrophages and Th1 cells of the immune system in response to inflammation. Given its significance as a biomarker with elevated levels in physiological fluids in various conditions, there is an increasing demand for a simple and accurate TNF-α detection strategy. In this article, we present a liquid crystal (LC)–based biosensor developed for sensitive TNF-α detection. The biosensor operates as follows: TNF-α and detection antibodies (DAbs) form complexes during preincubation. These complexes then bind with the surface-immobilized capture antibodies (CAbs), facilitating the antigen–antibody reaction between the CAbs and the TNF-α/DAb complexes. This target recognition interaction alters the surface topography, disrupting the vertical orientation of LCs produced by dimethyloctadecyl[3-(trimethoxysilyl)-propyl]ammonium chloride. The orientational change in the LCs can be easily visualized with a polarized optical microscope, resulting in brighter images as TNF-α levels rise. Our results demonstrated a linear range of 5.00–500 pg/mL, with a limit of detection and limit of quantification being 1.08 and 3.56 pg/mL, respectively. Recovery experiments on diluted saliva samples produced reasonable results, with TNF-α recoveries ranging from 97.1% ± 2.58% to 107% ± 5.95%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37. https://doi.org/10.1097/AIA.0b013e318034194e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grellner W (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int 130:90–96. https://doi.org/10.1016/S0379-0738(02)00342-0

    Article  CAS  PubMed  Google Scholar 

  3. Silva LB, dos Santos Neto AP, Maia SMAS, dos Santos GC, Quidute IL, Carvalho AdAT et al (2019) The role of TNF-α as a proinflammatory cytokine in pathological processes. Open Dent J 13:332–338. https://doi.org/10.1016/10.2174/1874210601913010332

    Article  CAS  Google Scholar 

  4. Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281:1001–1005. https://doi.org/10.1126/science.281.5379.1001

    Article  CAS  PubMed  Google Scholar 

  5. Sherwood ER, Toliver-Kinsky T (2004) Mechanisms of the inflammatory response. Best Pract Res Clin Anaesthesiol 18:385–405. https://doi.org/10.1016/j.bpa.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Hu S, Peterson P, Chao C (1997) Cytokine-mediated neuronal apoptosis. Neurochem Int 30:427–431. https://doi.org/10.1016/S0197-0186(96)00078-2

    Article  CAS  PubMed  Google Scholar 

  7. Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M et al (2011) Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells 29:1601–1610. https://doi.org/10.1002/stem.703

    Article  CAS  PubMed  Google Scholar 

  8. Darzynkiewicz Z, Williamson B, Carswell EA, Old LJ (1984) Cell cycle-specific effects of tumor necrosis factor. Can Res 44:83–90

    CAS  Google Scholar 

  9. Varghese SS, Thomas H, Jayakumar ND, Sankari M, Lakshmanan R (2015) Estimation of salivary tumor necrosis factor-alpha in chronic and aggressive periodontitis patients. Contemp Clin Dent 6:S152-156. https://doi.org/10.4103/0976-237X.166816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krishnan R, Thayalan DK, Padmanaban R, Ramadas R, Annasamy RK, Anandan N (2014) Association of serum and salivary tumor necrosis factor-alpha with histological grading in oral cancer and its role in differentiating premalignant and malignant oral disease. Asian Pac J Cancer Prev 15:7141–7148. https://doi.org/10.7314/apjcp.2014.15.17.7141

    Article  PubMed  Google Scholar 

  11. Conraads VM, Denollet J, De Clerck LS, Stevens WJ, Bridts C, Vrints CJ (2006) Type D personality is associated with increased levels of tumour necrosis factor (TNF)-alpha and TNF-alpha receptors in chronic heart failure. Int J Cardiol 113(1):34–38. https://doi.org/10.1016/j.ijcard.2005.10.013

    Article  PubMed  Google Scholar 

  12. Wei ST, Sun YH, Zong SH, Xiang YB (2015) Serum levels of IL-6 and TNF-alpha may correlate with activity and severity of rheumatoid arthritis. Med Sci Monit 21:4030–4038. https://doi.org/10.12659/MSM.895116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens C, Walz G, Singaram C, Lipman ML, Zanker B, Muggia A et al (1992) Tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in inflammatory bowel disease. Dig Dis Sci 37:818–826. https://doi.org/10.1007/BF01300378

    Article  CAS  PubMed  Google Scholar 

  14. Sfikakis PP, Iliopoulos A, Elezoglou A, Kittas C, Stratigos A (2005) Psoriasis induced by anti-tumor necrosis factor therapy: a paradoxical adverse reaction. Arthritis Rheum 52:2513–2518. https://doi.org/10.1002/art.21233

    Article  CAS  PubMed  Google Scholar 

  15. Prince W, Harder K, Saks S, Reed B, Chen A, Jones A (1987) ELISA for quantitation of tumor necrosis factor-α in serum. J Pharm Biomed Anal 5:793–802. https://doi.org/10.1016/0731-7085(87)80097-3

    Article  CAS  PubMed  Google Scholar 

  16. Bellagambi FG, Baraket A, Longo A, Vatteroni M, Zine N, Bausells J et al (2017) Electrochemical biosensor platform for TNF-α cytokines detection in both artificial and human saliva: heart failure. Sens Actuators B 251:1026–1033. https://doi.org/10.1016/j.snb.2017.05.169

    Article  CAS  Google Scholar 

  17. Barhoumi L, Baraket A, Bellagambi FG, Karanasiou GS, Ali MB, Fotiadis DI et al (2018) A novel chronoamperometric immunosensor for rapid detection of TNF-α in human saliva. Sens Actuators B 266:477–484. https://doi.org/10.1016/j.snb.2018.03.135

    Article  CAS  Google Scholar 

  18. Sri S, Chauhan D, Lakshmi GBVS, Thakar A, Solanki PR (2022) MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients. Electrochim Acta 405:139736. https://doi.org/10.1016/j.electacta.2021.139736

    Article  CAS  Google Scholar 

  19. Jones LJ, Singer VL (2001) Fluorescence microplate-based assay for tumor necrosis factor activity using SYTOX Green stain. Anal Biochem 293:8–15. https://doi.org/10.1006/abio.2001.5116

    Article  CAS  PubMed  Google Scholar 

  20. Bari SMI, Reis LG, Nestorova GG (2019) Calorimetric sandwich-type immunosensor for quantification of TNF-alpha. Biosens Bioelectron 126:82–87. https://doi.org/10.1016/j.bios.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  21. Govindaraju T, Bertics PJ, Raines RT, Abbott NL (2007) Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands. J Am Chem Soc 129:11223–11231. https://doi.org/10.1021/ja073203x

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Wu C, Tan H, Wu Y, Liao S, Wu Z et al (2013) Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal Chem 85:14–18. https://doi.org/10.1021/ac302989h

    Article  CAS  PubMed  Google Scholar 

  23. Hong PTK, Yun K, Jang C-H (2021) Liquid crystal-based droplet sensor for the detection of Hg(II) ions using an aptamer as the recognition element. BioChip J 15:152–161. https://doi.org/10.1007/s13206-021-00010-7

    Article  CAS  Google Scholar 

  24. Khan M, Liu S, Qi L, Ma C, Munir S, Yu L, Hu Q (2021) Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface. Trac Trends Anal Chem 144:116434. https://doi.org/10.1016/j.trac.2021.116434

    Article  CAS  Google Scholar 

  25. Oladepo SA (2021) Temperature-dependent fluorescence emission of 4-cyano-4′-pentylbiphenyl and 4-cyano-4′-hexylbiphenyl liquid crystals and their bulk phase transitions. J Mol Liq 323:114590. https://doi.org/10.1016/j.molliq.2020.114590

    Article  CAS  Google Scholar 

  26. Ren H, Jang C-H (2019) A simple liquid crystal-based aptasensor using a hairpin-shaped aptamer for the bare-eye detection of carcinoembryonic antigen. BioChip J 13:352–361. https://doi.org/10.1007/s13206-019-3406-1

    Article  CAS  Google Scholar 

  27. Hong PTK, Jang C-H (2021) A liquid crystal sensor supported on an aptamer-immobilized surface for specific detection of ochratoxin A. IEEE Sens J 21:27414–27421. https://doi.org/10.1109/JSEN.2021.3126170

    Article  CAS  Google Scholar 

  28. Han G-R, Jang C-H (2015) Liquid crystal sensor for the detection of acetylcholine using acetylcholinesterase immobilized on a nanostructured polymeric surface. Colloid Polym Sci 293:2771–2779. https://doi.org/10.1007/s00396-015-3648-y

    Article  CAS  Google Scholar 

  29. Jeon DY, Jang C-H (2022) Detection of anti-SARS-CoV-2 antibody for the diagnosis of past-COVID-19 infection cases using a liquid-crystal-based immunosensor. Liq Cryst 49:1285–1296. https://doi.org/10.1080/02678292.2022.2028315

    Article  CAS  Google Scholar 

  30. Lai SL, Tan WL, Yang KL (2011) Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals. ACS Appl Mater Interfaces 3:3389–3395. https://doi.org/10.1021/am200571h

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Wang B, Xiong X, Deng S (2019) Gold nanoparticle-based signal enhancement of an aptasensor for ractopamine using liquid crystal based optical imaging. Mikrochim Acta 186:697. https://doi.org/10.1007/s00604-019-3811-0

    Article  CAS  PubMed  Google Scholar 

  32. Chuang H-Y, Chen C-H (2019) Developing liquid crystal-based immunoassay for melamine detection. Re Chem Intermed 45:91–102. https://doi.org/10.1007/s11164-018-3625-4

    Article  CAS  Google Scholar 

  33. Pezelj-Ribaric S, Prso IB, Abram M, Glazar I, Brumini G, Simunovic-Soskic M (2004) Salivary levels of tumor necrosis factor-alpha in oral lichen planus. Mediators Inflamm 13:131–133. https://doi.org/10.1080/09629350410001688530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhandari D, Chen FC, Bridgman RC (2019) Detection of salmonella typhimurium in romaine lettuce using a surface plasmon resonance biosensor. Biosensors 9:94. https://doi.org/10.3390/bios9030094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kahn FJ (1973) Orientation of liquid crystals by surface coupling agents. Appl Phys Lett 22:386–388. https://doi.org/10.1063/1.1654684

    Article  CAS  Google Scholar 

  36. Jang LS, Liu HJ (2009) Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed Microdevices 11:331–338. https://doi.org/10.1007/s10544-008-9239-7

    Article  CAS  PubMed  Google Scholar 

  37. He Q, Lei H, Luo S, Tang P, Peng X, Wang X (2017) Liquid crystal biosensor for detecting ischemia modified albumin. Res Chem Intermed 43:353–360. https://doi.org/10.1007/s11164-016-2626-4

    Article  CAS  Google Scholar 

  38. Gunda NSK, Singh M, Norman L, Kaur K, Mitra SK (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305:522–530. https://doi.org/10.1016/j.apsusc.2014.03.130

    Article  CAS  Google Scholar 

  39. Bi X, Yang KL (2008) A principle of detecting and differentiating dialdehydes from monoaldehydes by using surface reactions and liquid crystals. J Phys Chem C 112:1748–1750. https://doi.org/10.1021/jp7110814

    Article  CAS  Google Scholar 

  40. An Z, Jang CH (2019) Simple and label-free liquid crystal-based optical sensor for highly sensitive and selective endotoxin detection by aptamer binding and separation. ChemistrySelect 4:1416–1422. https://doi.org/10.1002/slct.201803774

    Article  CAS  Google Scholar 

  41. Svenson M, Hansen MB, Bendtzen K (1993) Binding of cytokines to pharmaceutically prepared human immunoglobulin. J Clin Invest 92:2533–2539. https://doi.org/10.1172/JCI116862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue CY, Yang KL (2008) Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. Langmuir 24:563–567. https://doi.org/10.1021/la7026626

    Article  CAS  PubMed  Google Scholar 

  43. Bui M-PN, Li CA, Seong GH (2012) Electrochemical detection of dopamine with poly-glutamic acid patterned carbon nanotube electrodes. BioChip J 6:149–156. https://doi.org/10.1007/s13206-012-6207-3

    Article  CAS  Google Scholar 

  44. Gallo P, Pisciottano IDM, Esposito F, Fasano E, Scognamiglio G, Mita GD, Cirillo T (2017) Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food chem 220:406–412. https://doi.org/10.1016/j.foodchem.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  45. Gao S, Cheng Y, Zhang S, Zheng X, Wu J (2022) A biolayer interferometry-based, aptamer–antibody receptor pair biosensor for real-time, sensitive, and specific detection of the disease biomarker TNF-α. Chem Eng J 433:133268. https://doi.org/10.1016/j.cej.2021.133268

    Article  CAS  Google Scholar 

  46. Patrikar RM (2004) Modeling and simulation of surface roughness. Appl Surf Sci 228:213–220. https://doi.org/10.1016/j.cej.2021.133268

    Article  CAS  Google Scholar 

  47. Hamzah NA, Razak NAA, Karim MSA, Salleh SZ (2022) Validation of a roughness parameters for defining surface roughness of prosthetic polyethylene Pe-Lite liner. Sci Rep 12(1):2636. https://doi.org/10.1038/s41598-022-05173-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169. https://doi.org/10.1067/mpr.2001.113778

    Article  CAS  PubMed  Google Scholar 

  49. Blaszykowski C, Sheikh S, Thompson M (2015) A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomater Sci 3(10):1335–1370. https://doi.org/10.1039/C5BM00085H

    Article  CAS  PubMed  Google Scholar 

  50. Brightbill EL, Hitchcock B, Tsai MY, Verga A, Vogel EM (2019) Preblocking procedure to mitigate nonselective protein adsorption for Carboxyl-SAMs used in biosensing. J Phys Chem C 123(27):16778–16786. https://doi.org/10.1021/acs.jpcc.9b03680

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), the Ministry of Education (NRF-2019R1A2C1003862), and the Gachon University research fund of 2021 (GCU-202110460001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Jang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, JJ., Jang, CH. A liquid crystal–based biosensor for sensitive detection of tumor necrosis factor-alpha. Microchim Acta 191, 55 (2024). https://doi.org/10.1007/s00604-023-06125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06125-y

Keywords

Navigation