Skip to main content
Log in

3D nanocake-like Au-MXene/Au pallet structure–based label-free electrochemical aptasensor for paraquat determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

3D nanocake-like Au-MXene and Au pallet (Au-MXene/AuP) nanocomposite–modified screen-printed carbon electrodes (SPCEs) were utilized to construct an ultrasensitive label-free electrochemical aptasensor through a self-assembly procedure for trace paraquat (PQ) residue detection. Benefiting from the excellent electrochemical (EC) performances (e.g., high conductivity and large surface area) of Au-MXene nanocomposites and AuP substrate, the developed Apt/Au-MXene/AuP/SPCE-based EC aptasensor displayed excellent specificity and anti-interference ability, good repeatability, and stability. A linear relationship between the log value of the change in current intensity [lg (ΔI)] and the log value of the concentration of PQ [lg (CPQ)] was obtained in the range 0.05–1000 ng/mL. The limit of detection was 0.028 ng/mL, and the sensitivity was 255.5 μA/(μM·cm2). Practical applications in malt and mint samples confirmed the accuracy of the EC aptasensor in complex matrices for PQ detection, providing a universal analytical tool for other trace pesticides in different food samples by simply replacing the corresponding aptamers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Alsubhi M, Blake M, Nguyen T, Majmudar I, Moodie M, Ananthapavan J (2023) Consumer willingness to pay for healthier food products: a systematic review. Obes Rev 24:e13525

    Article  PubMed  Google Scholar 

  2. Zhang R, Zhang MX, Chen Y, Wang CC, Zhang CH, Heuberger H, Li HT, Li MH (2021) Future development of good agricultural practice in China under globalization of traditional herbal medicine trade. Chin Herb Med 13:472–479

    PubMed  PubMed Central  Google Scholar 

  3. Cao P, Wang G, Wei XM, Chen SL, Han JP (2021) How to improve CHMs quality: enlighten from CHMs ecological cultivation. Chin Herb Med 13:301–312

    PubMed  PubMed Central  Google Scholar 

  4. Li LR, Chaudhary B, You C, Dennis JA (2021) Wakeford H. Glucocorticoid with cyclophosphamide for oral paraquat poisoning. Cochrane DB Syst Rev 6:Cd008084

    Google Scholar 

  5. Xia JJ, Xiong Z, Guo JX, Wang YG, Luo Y, Sun YY, Guo ZW, Lu BC, Zhang T, Sun W (2022) Study of paraquat-induced pulmonary fibrosis using biomimetic micro-lung chips. Biofabrication 15:1758–5082

    Google Scholar 

  6. Yang J, Chen SW, Zhang B, Tu Q, Wang J, Yuan MS (2022) Non-biological fluorescent chemosensors for pesticides detection. Talanta 240:123200

    Article  CAS  PubMed  Google Scholar 

  7. McGwin G Jr, Griffin RL (2022) An ecological study regarding the association between paraquat exposure and end stage renal disease. J Environ Health 21:127

    Article  Google Scholar 

  8. Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease. Cell Reprogram 22:930–940

    Article  CAS  Google Scholar 

  9. Liu XB, Yang H, Liu ZN (2022) Signaling pathways involved in paraquat-induced pulmonary toxicity: molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 113:109301

    Article  CAS  PubMed  Google Scholar 

  10. Liu CX (2021) Quality study needs innovation. Chin Herb Med 13:1

    PubMed  PubMed Central  Google Scholar 

  11. Li ZM, Lakuleswaran M, Kannan K (2023) LC-MS/MS methods for the determination of 30 quaternary ammonium compounds including benzalkonium and paraquat in human serum and urine. J Chromatogr B 1214:123562

    Article  CAS  Google Scholar 

  12. Kuitio C, Klangprapan S, Chingkitti N, Boonthavivudhi S, Choowongkomon K (2021) Aptasensor for paraquat detection by gold nanoparticle colorimetric method. J Environ Sci Health B 56:370–377

    Article  CAS  PubMed  Google Scholar 

  13. Ren HX, Mao MX, Li M, Zhang CZ, Peng CF, Xu JG, Wei XL (2021) A fluorescent detection for paraquat based on β-CDs-enhanced fluorescent gold nanoclusters. Foods 10:1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sha O, Cui B, Chen XB, Liu H, Yao JW, Zhu YQ (2020) Separation and determination of paraquat and diquat in human plasma and urine by magnetic dispersive solid phase extraction coupled with high-performance liquid chromatography. J Anal Methods Chem 2020:7359582

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu QL, Tao H, Wu YG, Wang X, Shi QL, Xiang DL (2022) A label-free electrochemical aptasensor based on Zn/Fe bimetallic MOF derived nanoporous carbon for ultra-sensitive and selective determination of paraquat in vegetables. Foods 11:2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang CG, Wu XZ, Dong PT, Chen J, Xiao R (2016) Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens Bioelectron 86:944–950

    Article  CAS  PubMed  Google Scholar 

  17. Hou YJ, Long N, Xu QB, Li Y, Song PY, Yang MH, Wang JB, Zhou LD, Sheng P, Kong WJ (2023a) Development of a Nafion-MWCNTs and in-situ generated Au nanopopcorns dual-amplification electrochemical aptasensor for ultrasensitive detection of OTA. Food Chem 403:134375

    Article  CAS  PubMed  Google Scholar 

  18. Hou YJ, Jia BY, Sheng P, Liao XF, Shi LC, Fang L, Zhou LD, Kong WJ (2022) Aptasensors for mycotoxins in foods: recent advances and future trends. Compr Rev Food Sci Food Saf 21:2032–2073

    Article  CAS  PubMed  Google Scholar 

  19. Hou YJ, Xu QB, Li Y, Long N, Li P, Wang JB, Zhou LD, Sheng P, Kong WJ (2023b) Ultrasensitive electrochemical aptasensor with Nafion-stabilized f-MWCNTs as signal enhancers for OTA detection. Bioelectrochemistry 151:108399

    Article  CAS  PubMed  Google Scholar 

  20. Zeng H, Yang HL, Tang Y, Niu XJ, Wu YG (2022) Aptamer-enhanced the Ag(I) ion-3,3′,5,5′-tetramethylbenzdine catalytic system as a novel colorimetric biosensor for ultrasensitive and selective detection of paraquat. Spectrochim Acta A 280:121571

    Article  CAS  Google Scholar 

  21. Mahmoudpour M, Karimzadeh Z, Ebrahimi G, Hasanzadeh M, Ezzati Nazhad Dolatabadi J (2022) Synergizing functional nanomaterials with aptamers based on electrochemical strategies for pesticide detection: current status and perspectives. Crit Rev Anal Chem 52:1818–1845

    Article  CAS  PubMed  Google Scholar 

  22. Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ (2022) A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16:13370–13429

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Chen LK, Yang Y, Xu LP, Sun JY, Gan T (2023) MXene-reinforced octahedral PtCu nanocages with boosted electrocatalytic performance towards endocrine disrupting pollutants sensing. J Hazard Mater 442:130000

    Article  CAS  PubMed  Google Scholar 

  24. Yao B, Yao JT, Fan ZQ, Zhao J, Zhang K, Huang W (2022) Rapid advances of versatile MXenes for electrochemical enzyme-based biosensors, immunosensors, and nucleic acid-based biosensors. ChemElectroChem 9:e202200103

    Article  CAS  Google Scholar 

  25. Wang J, Xu QB, Liu JX, Kong WJ, Shi LC (2023) Development of UiO-66-NH2 and RuO2 composite-modified carbon fiber for highly sensitive sensing of ferulic acid. Rare Metals 42:3630–3637

    Article  CAS  Google Scholar 

  26. Zeng RJ, Wang WJ, Chen MM, Wan Q, Wang CC, Knopp D, Tang DP (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82:105711

    Article  CAS  Google Scholar 

  27. Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K (2023) 2D MXene-based biosensing: a review. Small 19:2205249

    Article  CAS  Google Scholar 

  28. Yang LY, Cui J, Zhang L, Xu XR, Chen X, Sun DP (2021) A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv Funct 31:2101378

    Article  CAS  Google Scholar 

  29. Wang J, Xu QB, Liu JX, Kong WJ, Shi LC (2023) Electrostatic self-assembly of MXene on ruthenium dioxide-modified carbon cloth for electrochemical detection of kaempferol. Small 19:e2301709

    Article  PubMed  Google Scholar 

  30. Su XY, Wang H, Wang CQ, Zhou X, Zou XB, Zhang W (2022) Programmable dual-electric-field immunosensor using MXene-Au-based competitive signal probe for natural parathion-methyl detection. Biosens Bioelectron 214:114546

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y, Wang XY, Ding CF, Luo XL (2021) Ratiometric antifouling electrochemical biosensors based on multifunctional peptides and MXene loaded with Au nanoparticles and methylene blue. ACS Appl Mater Interfaces 13:20388–20396

    Article  CAS  PubMed  Google Scholar 

  32. Jia MX, Jia BY, Liao XF, Shi LC, Zhang Z, Liu M, Zhou LD, Li DH, Kong WJ (2022) A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere 287:131994

    Article  CAS  PubMed  Google Scholar 

  33. Zhang JL, Yang F, Zheng WJ, Bai Y, Ouyang JM (2005) Self-assembly monolayers and their characterization. Prog Chem 2:203–208

    Google Scholar 

  34. Modh H, Witt M, Urmann K, Lavrentieva A, Segal E, Scheper T, Walter JG (2017) Aptamer-based detection of adenosine triphosphate via qPCR. Talanta 172:199–205

    Article  CAS  PubMed  Google Scholar 

  35. Noh S, Lee H, Kim J, Jang H, An J, Park C, Lee MH, Lee T (2022) Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. Biosens Bioelectron 207:114159

    Article  CAS  PubMed  Google Scholar 

  36. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249

    Article  CAS  PubMed  Google Scholar 

  37. Niu ZJ, Liu YW, Li X, Yan K, Chen HX (2022) Electrochemical sensor for ultrasensitive detection of paraquat based on metal-organic frameworks and para-sulfonatocalix[4]arene-AuNPs composite. Chemosphere 307:135570

    Article  CAS  PubMed  Google Scholar 

  38. Zheng WR, Su RB, Yu GG, Liu L, Yan F (2022) Highly sensitive electrochemical detection of paraquat in environmental water samples using a vertically ordered mesoporous silica film and a nanocarbon composite. Nanomaterials 12:3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun JD, Chen C, Zhang YZ, Sun XL (2021) A novel fluorescent molecularly imprinted polymer SiO2@CdTe QDs@MIP for paraquat detection and adsorption. Luminescence 36:345–352

    Article  CAS  PubMed  Google Scholar 

  40. Kongpreecha P, Siri S (2022) Simple colorimetric screening of paraquat residue in vegetables evaluated by localized surface plasmon resonance of gold nanoparticles. Biotechnol Appl Biochem 69:1148–1158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the National Natural Science Foundation of China (82274089, 81973474) and the Beijing Natural Science Foundation (7232265, 7222285).

Author information

Authors and Affiliations

Authors

Contributions

QX: Methodology, investigation, data curation, writing—original draft. JW: Validation, formal analysis, data curation. PS: Methodology, investigation, data curation. YL: Methodology, data curation. NL: Investigation, data curation. WW: Investigation, data curation. LZ: Funding acquisition, supervision. LS: Resources, methodology, data curation. RP: Methodology, investigation. WK: Conceptualization, writing (review and editing), funding acquisition, supervision.

Corresponding authors

Correspondence to Lin-Chun Shi, Rui-Le Pan or Wei-Jun Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 896 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QB., Wang, J., Song, PY. et al. 3D nanocake-like Au-MXene/Au pallet structure–based label-free electrochemical aptasensor for paraquat determination. Microchim Acta 191, 33 (2024). https://doi.org/10.1007/s00604-023-06111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06111-4

Keywords

Navigation