Skip to main content
Log in

Au nano-cone array for SERS detection of associated miRNA in lymphoma patients

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on Au nano-cone array (Au-NCA) and a three-segment hybridization strategy, a novel SERS biosensor is proposed for the ultrasensitive detection of the microRNA miR-21. The uniform, stable, and reproducible Au-NCA was prepared by the single-layer colloidal ball template method. Subsequently, the target was hybridized with sequence 2. The resulting target-sequence 2 complex was then hybridized with sequence 1 anchored on Au-NCA. Thus, a three-segment sequence complex was formed. SERS measurements can be performed without the need for complex purification and amplification steps. Due to the ability of miR-21 to perform specific complementary hybridization with two sequences, SERS biosensors have superior specificity for miR-21 without interference from other miRNAs. Under the optimal conditions, the SERS biosensor was applied and the limit of detection (LOD) was as low as 3.02 aM. This method has been successfully used to the detection of miR-21 in the serum of lymphoma patients and healthy volunteers. The results are consistent with the traditional test methods. Therefore, this novel SERS biosensor shows excellent clinical translational potential in the detection of lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiong X, Xie X, Wang Z, Zhang Y, Wang L (2022) Tumor-associated macrophages in lymphoma: from mechanisms to therapy. Int Immunopharmacol 112:109235

    Article  CAS  PubMed  Google Scholar 

  2. Vega F, Miranda RN, Medeiros LJ (2020) KSHV/HHV8-positive large B-cell lymphomas and associated diseases: a heterogeneous group of lymphoproliferative processes with significant clinicopathological overlap. Modern Pathol 33:18–28

    Article  Google Scholar 

  3. Tsuji T, Satoh K, Nakano H, Nishide Y, Uemura Y, Tanaka S, Kogo M (2015) Predictors of the necessity for lymph node biopsy of cervical lymphadenopathy. J Cranio Maxill Surg 43:2200–2204

    Article  Google Scholar 

  4. Sin KM, Ho SKD, Wong BYK, Gill H, Khong P-L, Lee EYP (2017) Beyond the lymph nodes: FDG-PET/CT in primary extranodal lymphoma. Clin Imag 42:25–33

    Article  Google Scholar 

  5. Regazzo G, Marchesi F, Spagnuolo M, Díaz Méndez AB, Masi S, Mengarelli A, Rizzo MG (2021) Diffuse large B-cell lymphoma: time to focus on circulating blood nucleic acids? Blood Rev 47:100776

    Article  CAS  PubMed  Google Scholar 

  6. Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L (2020) Progress and trends on the analysis of nucleic acid and its modification. J Pharmaceut Biomed 191:113589

    Article  CAS  Google Scholar 

  7. Song C, Chen W, Kuang J, Yao Y, Tang S, Zhao Z, Guo X, Shen W, Lee HK (2021) Recent advances in the detection of multiple microRNAs. Trac-Trend Anal Chem 139:116269

    Article  CAS  Google Scholar 

  8. Zhang D, Bian F, Cai L, Wang T, Kong T, Zhao Y (2019) Bioinspired photonic barcodes for multiplexed target cycling and hybridization chain reaction. Biosens Bioelectron 143:111629

    Article  CAS  PubMed  Google Scholar 

  9. Fuertes T, Ramiro AR, de Yebenes VG (2020) miRNA-based therapies in B cell non-Hodgkin lymphoma. Trends Immunol 41:932–947

    Article  CAS  PubMed  Google Scholar 

  10. Estephan R, Kil SH, Rosen ST, Querfeld C (2018) PD-L1 expression is regulated by microRNAs-21 and -130 in cutaneous T-cell lymphoma. Blood 132:4108

    Article  Google Scholar 

  11. Gohar SF, Kamal Eldin S, El-Bassal F, Shehata A, Azzam A, Tawfik E, Al Hassanin SA (2018) 1032P—the impact of serum microRNA-21 on outcome of diffuse large B-cell lymphoma patients. Ann Oncol 29:viii367

    Article  Google Scholar 

  12. Ma Y, Suolitiken D, Chen B, Xu X, Kang H, Zhiguang L (2020) Circulating microRNAs is a potential prognostic biomarker in primary central nervous system lymphoma. Blood 136:40–41

    Google Scholar 

  13. Rahouma M, Rashed RA, Asker HA, Abdel-Azim LR, Naguib E, Khaled H (2019) 1074PD - Prognostic value of microRNA-21/ Ki-67 in non-Hodgkin's lymphoma: NCI experience. Ann Oncol 30:v437

    Article  Google Scholar 

  14. Vitek P, Krsmanovic P, Mocikova H, Chramostova K, Pytlík R, Stopka T, Trněný M (2022) 3218 – Circulating microRNAs in cerebrospinal fluid and plasma: sensitive tool for detection of secondary CNS involvement, monitoring of therapy and prediction of CNS relapse in aggressive B-NHL lymphomas. Exp Hematol 111:S153–S154

    Article  Google Scholar 

  15. Gines G, Menezes R, Xiao W, Rondelez Y, Taly V (2020) Emerging isothermal amplification technologies for microRNA biosensing: applications to liquid biopsies. Mol Aspects Med 72:100832

    Article  PubMed  Google Scholar 

  16. Li M, Liu Z, Liu Y, Luo H, Huang K-J, Tan X (2023) Capacitor-parallel-amplified decoupled photoelectrochemical/electrochromic dual-mode bioassay for sensitive detection of microRNA with high reliability. Biosens Bioelectron 232:115310

    Article  CAS  PubMed  Google Scholar 

  17. Zayani R, Rabti A, Ben Aoun S, Raouafi N (2021) Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera. Sensor Actuat B-Chem 327:128950

    Article  CAS  Google Scholar 

  18. Yue S, Fang J, Xu Z (2022) Advances in droplet microfluidics for SERS and Raman analysis. Biosens Bioelectron 198:113822

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M-z, Zhou Z-m, Xu J, Wang W-l, Pu S-h, Hu W-y, Luo P, Tian Z-q, Gong Z-b, Liu G-k (2022) Qualitative analysis of trace quinolone antibiotics by SERS with fine structure dependent sensitivity. Spectrochim Acta A 278:121365

    Article  CAS  Google Scholar 

  20. Zhu J, Agyekum AA, Kutsanedzie FYH, Li H, Chen Q, Ouyang Q, Jiang H (2018) Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT 97:760–769

    Article  CAS  Google Scholar 

  21. Khulbe KC, Matsuura T (2000) Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review. Polymer 41:1917–1935

    Article  CAS  Google Scholar 

  22. Qu C, Li Y, Du S, Geng Y, Su M, Liu H (2022) Raman spectroscopy for rapid fingerprint analysis of meat quality and security: principles, progress and prospects. Food Res Int 161:111805

    Article  CAS  PubMed  Google Scholar 

  23. Mandal P, Tewari BS (2022) Progress in surface enhanced Raman scattering molecular sensing: a review. Surf Interfaces 28:101655

    Article  CAS  Google Scholar 

  24. Chen M, Huang Y, Miao J, Fan Y, Lai K (2023) A highly sensitive surface-enhanced Raman scattering sensor with MIL-100(Fe)/Au composites for detection of malachite green in fish pond water. Spectrochim Acta A 292:122432

    Article  CAS  Google Scholar 

  25. Neng J, Wang J, Wang Y, Zhang Y, Chen P (2023) Trace analysis of food by surface-enhanced Raman spectroscopy combined with molecular imprinting technology: principle, application, challenges, and prospects. Food Chem 429:136883

    Article  PubMed  Google Scholar 

  26. Guo M, Li M, Fu H, Zhang Y, Chen T, Tang H, Zhang T, Li H (2023) Quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in water by surface-enhanced Raman spectroscopy (SERS) combined with Random Forest. Spectrochim Acta A 287:122057

    Article  CAS  Google Scholar 

  27. Cai J, Liu R, Jia S, Feng Z, Lin L, Zheng Z, Wu S, Wang Z (2021) SERS hotspots distribution of the highly ordered noble metal arrays on flexible substrates. Opt Mater 122:111779

    Article  CAS  Google Scholar 

  28. Nie B, Luo Y, Shi J, Gao L, Duan G (2019) Bowl-like Pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder. Sensor Actuat B-Chem 301:127087

    Article  CAS  Google Scholar 

  29. Gu X, Tian S, Chen Y, Wang Y, Gu D, Guo E, Liu Y, Li J, Deng A (2021) A SERS-based competitive immunoassay using highly ordered gold cavity arrays as the substrate for simultaneous detection of β-adrenergic agonists. Sensor Actuat B-Chem 345:130230

    Article  CAS  Google Scholar 

  30. Lu Y, Zhan C, Yu L, Yu Y, Jia H, Chen X, Zhang D, Gao R (2023) Multifunctional nanocone array as solid immunoassay plate and SERS substrate for the early diagnosis of prostate cancer on microfluidic chip. Sensor Actuat B-Chem 376:133046

    Article  CAS  Google Scholar 

  31. Ge S, Chen G, Cao D, Lin H, Liu Z, Yu M, Wang S, Wang Z, Zhou M (2023) Au/SiNCA-based SERS analysis coupled with machine learning for the early-stage diagnosis of cisplatin-induced liver injury. Anal Chim Acta 1254:341113

    Article  CAS  PubMed  Google Scholar 

  32. Xu W, Bao H, Zhang H, Fu H, Zhao Q, Li Y, Cai W (2021) Ultrasensitive surface-enhanced Raman spectroscopy detection of gaseous sulfur-mustard simulant based on thin oxide-coated gold nanocone arrays. J Hazard Mater 420:126668

    Article  CAS  PubMed  Google Scholar 

  33. Cheson BD (2018) PET/CT in lymphoma: current overview and future directions. Semin Nucl Med 48:76–81

    Article  PubMed  Google Scholar 

  34. Laane E, Tani E, Björklund E, Elmberger G, Everaus H, Skoog L, Porwit-MacDonald A (2010) Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin’s lymphoma. Cytom Part B-Clin Cy 64B:34–42

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Graduate Scientific Research Innovation Program (No. SJCX22_1813) and Chinese and Western Medicine Cooperation Project of Subei People’s Hospital (No. ZXXTGG2022BO3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingqing Shi or Mei Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 162 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Gao, J., Chen, Z. et al. Au nano-cone array for SERS detection of associated miRNA in lymphoma patients. Microchim Acta 191, 40 (2024). https://doi.org/10.1007/s00604-023-06095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06095-1

Keywords

Navigation