Skip to main content
Log in

Matrix complete dissolution concatenated biochar magnetic solid-phase extraction of benzotriazole ultraviolet stabilizers in polyester fibers prior to UPLC-MS/MS analysis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Matrix complete dissolution combined with magnetic solid-phase extraction (MSPE) was applied to extract four benzotriazole ultraviolet stabilizers (BUVSs) from polyester curtains. Ultra-performance liquid chromatography tandem mass spectrometry was coupled to perform the content of trace BUVSs. The procedure was being developed in two steps. The polymer matrix was initially thoroughly dissolved by 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) followed by the addition of precipitant to separate the target from the dissolved polymer matrix. Next, triiron tetraoxide/biochar magnetic material was prepared and utilized as the sorbent for purification of the extract. Ultrasonic extraction coupled with the MSPE method and the proposed method was compared. Better extraction recovery of four BUVSs was acquired by the novel developed extraction method. The purification effect of the new extraction method was established by comparing the matrix effect of the polymer complete dissolution method and the polymer complete dissolution combined with the MSPE method. The extraction parameters were investigated. Under the optimized conditions, correlation coefficient (r) ranging from 0.9969 to 0.9997, limit of detection of 0.2 to 0.8 ng·g−1, and the recovery varied from 81.5 to 102.7% with RSD smaller than 10.7% were obtained for four BUVSs, respectively. This study provides a potential strategy for the efficient extraction and sensitive determination of BUVSs in polyester fibers samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chatha SAS, Asgher M, Asgher R et al (2019) Environmentally responsive and anti-bugs textile finishes—recent trends, challenges, and future perspectives [J]. Sci Total Environ 690:667–682. https://doi.org/10.1016/j.scitotenv.2019.06.520

    Article  CAS  PubMed  Google Scholar 

  2. Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z et al (2021) Fate and distribution of benzotriazole UV-filters and stabilizers in environmental compartments from Gran Canaria Island (Spain): a comparison study [J]. Sci Total Environ 756:144086. https://doi.org/10.1016/j.scitotenv.2020.144086

    Article  CAS  PubMed  Google Scholar 

  3. Sakuragi Y, Takada H, Sato H et al (2021) An analytical survey of benzotriazole UV-stabilizers in plastic products and their endocrine-disrupting potential via human estrogen and androgen receptors [J]. Sci Total Environ 800:149374. https://doi.org/10.1016/j.scitotenv.2021.149374

    Article  CAS  PubMed  Google Scholar 

  4. Li Q, Wang P, Wang C et al (2023) Benzotriazole UV stabilizer-induced genotoxicity in freshwater benthic clams: a survey on apoptosis, oxidative stress, histopathology and transcriptomics [J]. Sci Total Environ 857:159055. https://doi.org/10.1016/j.scitotenv.2022.159055

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Liang X, Liu W et al (2020) Elucidating mechanisms of immunotoxicity by benzotriazole ultraviolet stabilizers in zebrafish (Danio rerio): implication of the AHR-IL17/IL22 immune pathway [J]. Environ Pollut 262:114291. https://doi.org/10.1016/j.envpol.2020.114291

    Article  CAS  PubMed  Google Scholar 

  6. He T-T, Zhang T, Liu S-B et al (2019) Toxicological effects benzotriazole to the marine scallop Chlamys nobilis: a 2-month exposure study [J]. Environ Sci Pollut Res 26(10):10306–10318. https://doi.org/10.1007/s11356-019-04201-6

    Article  CAS  Google Scholar 

  7. Liang XF, Wang M, Chen X et al (2014) Endocrine disrupting effects of benzotriazole in rare minnow (Gobiocypris rarus) in a sex-dependent manner [J]. Chemosphere 112(1):154–162. https://doi.org/10.1016/j.chemosphere.2014.03.106

    Article  CAS  PubMed  Google Scholar 

  8. Kim J-W, Isobe T, Malarvannan G et al (2012) Contamination of benzotriazole ultraviolet stabilizers in house dust from the Philippines: implications on human exposure [J]. Sci Total Environ 424:174–181. https://doi.org/10.1016/j.scitotenv.2012.02.040

    Article  CAS  PubMed  Google Scholar 

  9. International association for research and testing in the field of textile ecology, 2023. OEKO-TEX Standard 100. https://www.oeko-tex.com/. (Accessed 10 January 2023).

  10. Rani M, Shim WJ, Han GM et al (2017) Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products [J]. Sci Total Environ 579:745–754. https://doi.org/10.1016/j.scitotenv.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  11. Avagyan R, Luongo G, Thorsen G et al (2015) Benzothiazole, benzotriazole, and their derivates in clothing textiles—a potential source of environmental pollutants and human exposure [J]. Environ Sci Pollut Res 22(8):5842–5849. https://doi.org/10.1007/s11356-014-3691-0

    Article  CAS  Google Scholar 

  12. Liu WB, Xue JC, Kannan K (2017) Occurrence of and exposure to benzothiazoles and benzotriazoles from textiles and infant clothing [J]. Sci Total Environ 592:91–96. https://doi.org/10.1016/j.scitotenv.2017.03.090

    Article  CAS  PubMed  Google Scholar 

  13. Miyake Y, Tokumura M, Nakayama H et al (2017) Simultaneous determination of brominated and phosphate flame retardants in flame-retarded polyester curtains by a novel extraction method [J]. Sci Total Environ 601:1333–1339. https://doi.org/10.1016/j.scitotenv.2017.05.249

    Article  CAS  PubMed  Google Scholar 

  14. Miyake Y, Tokumura M, Wang Q et al (2018) Identification of novel phosphorus-based flame retardants in curtains purchased in Japan using orbitrap mass spectrometry [J]. Environ Sci Technol Lett 5(7):448–455. https://doi.org/10.1021/acs.estlett.8b00263

    Article  CAS  Google Scholar 

  15. Zhou YY, Xu JB, Lu N et al (2021) Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water [J]. Talanta 225:121846. https://doi.org/10.1016/j.talanta.2020.121846

    Article  CAS  PubMed  Google Scholar 

  16. Qian Z, Mengdan Z, Yingying L et al (2022) Novel core–shell SiO2@dSiO2@NH2-MIL-53(Al) packed into solid phase extraction column for enrichment of non-steroidal anti-inflammatory drugs prior to UPLC-MS/MS [J]. Microchem J 183:107970. https://doi.org/10.1016/j.microc.2022.107970

    Article  CAS  Google Scholar 

  17. Narimani-Sabegh S, Noroozian E (2019) Magnetic solid-phase extraction and determination of ultra-trace amounts of antimony in aqueous solutions using maghemite nanoparticles [J]. Food Chem 287:382–389. https://doi.org/10.1016/j.foodchem.2019.02.112

    Article  CAS  PubMed  Google Scholar 

  18. Yang D, Tammina SK, Li X et al (2019) Enhanced removal and detection of benzo[a]pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites [J]. Ecotoxicol Environ Saf 170:383–390. https://doi.org/10.1016/j.ecoenv.2018.11.138

    Article  CAS  PubMed  Google Scholar 

  19. Sun RT, Lu FW, Yu CM et al (2022) Peanut shells-derived biochars as adsorbents for the pipette-tip solid-phase extraction of endocrine-disrupting phenols in water, milk and beverage [J]. J Chromatogr A 1673:463101. https://doi.org/10.1016/j.chroma.2022.463101

    Article  CAS  PubMed  Google Scholar 

  20. Zhou YW, Qin SY, Verma S et al (2021) Production and beneficial impact of biochar for environmental application: a comprehensive review [J]. Biores Technol 337:125451. https://doi.org/10.1016/j.biortech.2021.125451

    Article  CAS  Google Scholar 

  21. Yao XX, Ji LL, Guo J et al (2020) Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption [J]. Biores Technol 302:122842. https://doi.org/10.1016/j.biortech.2020.122842

    Article  CAS  Google Scholar 

  22. Huang YF, Peng JH, Huang XJ (2018) One-pot preparation of magnetic carbon adsorbent derived from pomelo peel for magnetic solid-phase extraction of pollutants in environmental waters [J]. J Chromatogr A 1546:28–35. https://doi.org/10.1016/j.chroma.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Zhang SL, Hua ZL, Yao WX et al (2021) Use of corn straw-derived biochar for magnetic solid-phase microextraction of organophosphorus pesticides from environmental samples [J]. J Chromatogr A 1660:462673. https://doi.org/10.1016/j.chroma.2021.462673

    Article  CAS  PubMed  Google Scholar 

  24. Ma JF, Chen YP, Wang H et al (2019) Traditional Chinese medicine residue act as a better fertilizer for improving soil aggregation and crop yields than manure [J]. Soil Tillage Res 195:104386. https://doi.org/10.1016/j.still.2019.104386

    Article  Google Scholar 

  25. Liu HD, Xu GR, Li GB (2021) Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline [J]. J Colloid Interface Sci 587:271–278. https://doi.org/10.1016/j.jcis.2020.12.014

    Article  CAS  PubMed  Google Scholar 

  26. Wang T, Zhao P, Lu N et al (2016) Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution [J]. Chem Eng J 295:403–413. https://doi.org/10.1016/j.cej.2016.03.016

    Article  CAS  Google Scholar 

  27. Hoteling AJ, Mourey TH, Owens KG (2005) Importance of solubility in the sample preparation of poly(ethylene terephthalate) for MALDI TOFMS [J]. Anal Chem 77(3):750–756. https://doi.org/10.1021/ac048525n

    Article  CAS  PubMed  Google Scholar 

  28. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects [J]. Rev Environ Sci Bio/Technol 19(1):191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  CAS  Google Scholar 

  29. Chen WM, Wang X, Feizbakhshan M et al (2019) Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors [J]. J Colloid Interface Sci 540:524–534. https://doi.org/10.1016/j.jcis.2019.01.058

    Article  CAS  PubMed  Google Scholar 

  30. Lomenech C, Hurel C, Messina L et al (2021) A humins-derived magnetic biochar for water purification by adsorption and magnetic separation [J]. Waste Biomass Valorization 12(12):6497–6512. https://doi.org/10.1007/s12649-021-01481-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiqing Chen or Xiaohong Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary filel (DOCX 7996 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, Y., Zhang, S. et al. Matrix complete dissolution concatenated biochar magnetic solid-phase extraction of benzotriazole ultraviolet stabilizers in polyester fibers prior to UPLC-MS/MS analysis. Microchim Acta 190, 496 (2023). https://doi.org/10.1007/s00604-023-06074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06074-6

Keywords

Navigation