Skip to main content
Log in

Electrochemical sensor for hydrogen sulfide detection using electrocatalysis-assisted amplification and chemical reaction-mediated signal enhancement

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive electrochemical biosensing platform has been designed by combining electrocatalysis-assisted H2S amplification with a chemical reaction-mediated electrochemical signal-boosted system for H2S detection based on Cu-Mn(OH)2 hexagonal nanorings. The signal amplification is initiated by an electrocatalysis reaction that can grasp specific H2S substrates and further highly amplify electrochemical signals. Then, the unique chemical reaction is powered by copper ion and generates a large amount of electroactive CuxS products on the electrode surface, thus achieving the multiple amplification of H2S detection. Finally, the Cu-Mn(OH)2 loaded with plenty of electroactive CuxS can be captured on the electrode for further improving the electrochemical signal thus obtaining ultra-high sensitive determination of H2S. The established electrochemical biosensing platform displays a wide analytical range of 0.1 μM to 265 μM with a low detection limit of 0.096 μM. The satisfactory selectivity allows the electrochemical sensor to distinguish H2S from other interfering substances without any complicated pretreatment, even in complex tumor cell samples. Thus, our designed electrocatalysis-assisted amplification strategy offers a powerful analysis toolkit for the early determination of H2S-related disease in clinical diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng YQ, Yu BC, De La Cruz LK, Choudhury MR, Anifowose A, Wang BH (2018) Toward hydrogen sulfide based therapeutics: critical drug delivery and developability issues. Med Res Rev 38:57–100. https://doi.org/10.1002/med.21433

    Article  CAS  PubMed  Google Scholar 

  2. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935. https://doi.org/10.1038/nrd2425

    Article  CAS  PubMed  Google Scholar 

  3. Kimura H (2017) Hydrogen sulfide and polysulfide signaling. Antioxid Redox Sign 27:619–621. https://doi.org/10.1089/ars.2017.7076

    Article  CAS  Google Scholar 

  4. Liu Q, Zhong Y, Su YQ, Zhao LZ, Peng JJ (2021) Real-time imaging of hepatic inflammation using hydrogen sulfide-activatable second near-infrared luminescent nanoprobes. Nano Lett 21:4606–4614. https://doi.org/10.1021/acs.nanolett.1c00548

    Article  CAS  PubMed  Google Scholar 

  5. Paul BD, Sbodio JI, Xu RS, Vandiver MS, Cha JY, Snowman AM, Snyder SH (2014) Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509:96. https://doi.org/10.1038/nature13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jose DA, Sharma N, Sakla R, Kaushik R, Gadiyaram S (2019) Fluorescent nanoprobes for the sensing of gasotransmitters hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO). Methods 168:62–75. https://doi.org/10.1016/j.ymeth.2019.06.003

    Article  CAS  Google Scholar 

  7. Xiao X, Wu TT, Cao JX, Zhu CL, Liu Y, Zhang X, Shen YZ (2020) Rational engineering of chromic material as near-infrared ratiometric fluorescent nanosensor for H2S monitoring in real food samples. Sens Actuators B Chem 323:128707. https://doi.org/10.1016/j.snb.2020.128707

    Article  CAS  Google Scholar 

  8. Vitvitsky V, Banerjee R (2015) H2S analysis in biological samples using gas chromatography with sulfur chemiluminescence detection. Method Enzymol 554:111–123. https://doi.org/10.1016/bs.mie.2014.11.013

    Article  CAS  Google Scholar 

  9. Luo YN, Zhu CZ, Du D, Lin YH (2019) A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 1061:1–12. https://doi.org/10.1016/j.aca.2019.02.045

    Article  CAS  PubMed  Google Scholar 

  10. Hu JX, Song HJ, Chen C, Zhang LC, Sun MX, Lv Y (2022) Efficient photoinduced thermocatalytic chemiluminescence system based on the Z-scheme heterojunction Ag3PO4/Ag/Bi4Ti3O12 for H2S sensing. Anal Chem 94:9415–9423. https://doi.org/10.1021/acs.analchem.2c015869415Anal

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JX, Lv CL, Tang C, Wang AJ, Mei LP, Song P, Feng JJ (2023) Sandwich-type ultrasensitive immunosensing of breast cancer biomarker based on core-shell Au@PdAg dog-bone-like nanostructures and Au@PtRh nanorods. Sens Actuators B Chem 382:133497. https://doi.org/10.1016/j.snb.2023.133497

    Article  CAS  Google Scholar 

  12. Ge XY, Zhang JX, Feng YG, Wang AJ, Mei LP, Feng JJ (2022) Label-free electrochemical sensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Microchim Acta 189:110. https://doi.org/10.1007/s00604-022-05179-8

    Article  CAS  Google Scholar 

  13. Zhang JX, Lv CL, Tang C, Jiang LY, Wang AJ, Feng JJ (2022) Ultrasensitive sandwich-typed electrochemical immunoassay for detection of squamous cell carcinoma antigen based on highly branched PtCo nanocrystals and dendritic mesoporous SiO2@AuPt nanoparticles. Microchim Acta 189:416. https://doi.org/10.1007/s00604-022-05520-1

    Article  CAS  Google Scholar 

  14. Zhu JH, Gou HW, Zhao TJ, Mei LP, Wang AJ, Feng JJ (2022) Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag2S/Ag decorated ZnIn2S4/C3N4 3D/2D Z-scheme heterostructures and amplified by Au/Cu2+-boron-nitride nanozyme. Biosens Bioelectron 203:114048. https://doi.org/10.1016/j.bios.2022.114048

    Article  CAS  PubMed  Google Scholar 

  15. Shang HY, Xu H, Jin LJ, Wang C, Chen CY, Song TX, Du YK (2020) 3D ZnIn2S4 nanosheets decorated ZnCdS dodecahedral cages as multifunctional signal amplification matrix combined with electroactive/photoactive materials for dual mode electrochemical - photoelectrochemical detection of bovine hemoglobin. Biosens Bioelectron 159:112202. https://doi.org/10.1016/j.bios.2020.112202

    Article  CAS  PubMed  Google Scholar 

  16. Helmerhorst E, Stokes GB (1983) Generation of an acid-stable and protein-bound persulfide-like residue in alkali-treated or sulfhydryl-treated insulin by a mechanism consonant with the beta-elimination hypothesis of disulfide bond lysis. Biochemistry 22:69–75. https://doi.org/10.1021/bi00270a010

    Article  CAS  PubMed  Google Scholar 

  17. Guo JL, Yang LL, Xu HJ, Zhao CX, Dai ZQ, Gao ZD, Song YY (2019) Biomineralization-driven ion gate in TiO2 nanochannel arrays for cell H2S sensing. Anal Chem 91:13746–13751. https://doi.org/10.1021/acs.analchem.9b03119

    Article  CAS  PubMed  Google Scholar 

  18. Tian L, Chen HY, Lu XH, Liu DS, Cheng WJ, Liu YY, Li J, Li Z (2022) Local photothermal and photoelectric effect synergistically boost hollow CeO2/CoS2 heterostructure electrocatalytic oxygen evolution reaction. J Colloid Interf Sci 628:663–672. https://doi.org/10.1016/j.jcis.2022.07.125

    Article  CAS  Google Scholar 

  19. Mao YW, Zhang JX, Chen DN, Wang AJ, Feng JJ (2022) Bimetallic PtFe alloyed nanoparticles decorated on 3D hollow N-doped carbon nanoflowers as efficient electrochemical biosensing interfaces for ultrasensitive detection of SCCA. Sens Actuators B Chem 370:132416. https://doi.org/10.1016/j.snb.2022.132416

    Article  CAS  Google Scholar 

  20. Soroka IL, Shchukarev A, Jonsson M, Tarakina NV, Korzhavyi PA (2013) Cuprous hydroxide in a solid form: does it exist? Dalton Trans 42:9585–9594. https://doi.org/10.1039/C3DT50351H

    Article  CAS  PubMed  Google Scholar 

  21. Dong B, Li W, Huang XX, Ali ZS, Zhang T, Yang ZY, Hou YL (2019) Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55:37–41. https://doi.org/10.1016/j.nanoen.2018.10.050

    Article  CAS  Google Scholar 

  22. Fang H, Zhang SC, Wu XM, Liu WB, Wen BH, Du ZJ, Jiang T (2013) Facile fabrication of multiwalled carbon nanotube/alpha-MnOOH coaxial nanocable films by electrophoretic deposition for supercapacitors. J Power Sources 235:95–104. https://doi.org/10.1016/j.jpowsour.2013.01.195

    Article  CAS  Google Scholar 

  23. Gong SG, Shi YH, Su Y, Li YF, Ding L, Lin J, Yang GD, Li B, Wu XL, Zhang JP, Xie HM, Sun HZ (2021) In situ growth of 3D lamellar Mn(OH)2 on CuO-coated carbon cloth for flexible asymmetric supercapacitors with a high working voltage of 2.4 V. ACS Sustain Chem Eng 9:13385–13394. https://doi.org/10.1021/acssuschemeng.1c05164

    Article  CAS  Google Scholar 

  24. Yang ZY, Gong JF, Tang CM, Zhu WH, Cheng ZJ, Jiang JH, Ma AB, Ding QP (2017) Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J Mater Sci-Mater El 28:17533–17540. https://doi.org/10.1007/s10854-017-7689-5

    Article  CAS  Google Scholar 

  25. Liu JW, You FT, He BW, Wu YL, Wang DD, Zhou WQ, Qian C, Yang GB, Liu GF, Wang H, Guo Y, Gu L, Feng LL, Li SZ, Zhao YL (2022) Directing the architecture of surface-clean Cu2O for CO electroreduction. J Am Chem Soc 144:12410–12420. https://doi.org/10.1021/jacs.2c04260

    Article  CAS  PubMed  Google Scholar 

  26. Lian JJ, Liu P, Liu QY (2022) Nano-scale minerals in-situ supporting CeO2 nanoparticles for off-on colorimetric detection of L-penicillamine and Cu2+ ion. J Hazard Mater 433:128766. https://doi.org/10.1016/j.jhazmat.2022.128766

    Article  CAS  PubMed  Google Scholar 

  27. Hu R, Ren XX, Song P, Wang AJ, Mei LP, Feng JJ (2023) Hollow cage-like PtCu nanozyme-regulated photo-activity of porous CdIn2S4/SnO2 heterojunctions for ultrasensitive PEC sensing of streptomycin. Biosens Bioelectron 236:115425. https://doi.org/10.1016/j.bios.2023.115425

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Dai G, Luo FF, Lu YQ, Zhang JW, Chu ZH, He PG, Zhang F, Wang QJ (2020) An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu2+-modified metal-organic framework nanoparticles. Microchim Acta 187:415. https://doi.org/10.1007/s00604-020-04364-x

    Article  CAS  Google Scholar 

  29. Liao CN, Chang TK, Huang YS, Chen HY (2022) Photoelectrochemical enhancement of Cu2O by a Cu2Te hole transmission interlayer. ACS Appl Mater Interfaces 14:48540–48546. https://doi.org/10.1021/acsami.2c10448

    Article  CAS  PubMed  Google Scholar 

  30. Lin LC, Lin PL, Song J, Zhang ZZ, Wang XX, Su WY (2023) Boosting the photocatalytic activity and stability of Cu2O for CO2 conversion. J Colloid Interf Sci 630:352–362. https://doi.org/10.1016/j.jcis.2022.10.026

    Article  CAS  Google Scholar 

  31. Song XR, Wang YZ, Ru JX, Yang Y, Feng Y, Cao C, Wang K, Zhang GL, Liu WS (2020) A mitochondrial-targeted red fluorescent probe for detecting endogenous H2S in cells with high selectivity and development of a visual paper-based sensing platform. Sens Actuators B Chem 312:127982. https://doi.org/10.1016/j.snb.2020.127982

    Article  CAS  Google Scholar 

  32. Hu XB, Liu YL, Zhang HW, Xiao C, Qin Y, Duo HH, Xu JQ, Guo S, Pang DW, Huang WH (2016) Electrochemical monitoring of hydrogen sulfide release from single cells. ChemElectroChem 3:1998–2002. https://doi.org/10.1002/celc.201600411

    Article  CAS  Google Scholar 

  33. Wang FF, Zhang CL, Qu XT, Cheng SS, Xian YZ (2019) Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosens Bioelectron 126:96–101. https://doi.org/10.1016/j.bios.2018.10.056

    Article  CAS  PubMed  Google Scholar 

  34. He SS, Hai J, Sun SH, Lu SY, Wang BD (2019) Palladium coordination polymers nanosheets: new strategy for sensitive photothermal detection of H2S. Anal Chem 91:10823–10829. https://doi.org/10.1021/acs.analchem.9b02468

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Liu X, Zhang M (2017) Reduction of ammineruthenium(III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide. Anal Chem 89:5382–5388. https://doi.org/10.1021/acs.analchem.7b00069

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Yang YX, Cui LY, Zheng FJ, Song QJ (2018) Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosens Bioelectron 117:53–59. https://doi.org/10.1016/j.bios.2018.05.047

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation for Young Scientists of Shanxi Province (No. 20210302123217) and Shanxi Medical University Scientific Research Funds (No. SD2226, No. XD2127).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z.: data curation, formal analysis, methodology, investigation, validation, visualization, and writing, original draft. Z.Y.: conceptualization and resources. H.Z.: data curation and formal analysis. H.S.: conceptualization, supervision, and writing, reviewing and revision.

Corresponding authors

Correspondence to Jinwen Du or Hongyuan Shang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 279 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yang, Z., Zhou, H. et al. Electrochemical sensor for hydrogen sulfide detection using electrocatalysis-assisted amplification and chemical reaction-mediated signal enhancement. Microchim Acta 190, 474 (2023). https://doi.org/10.1007/s00604-023-06067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06067-5

Keywords

Navigation