Skip to main content

Advertisement

Log in

A label-free electrochemical biosensor based on PBA-Au-MXene QD for miR-122 detection in serum samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract  

A poly(n-butyl acrylate)-gold-MXene quantum dots (PBA-Au-MXene QD) nanocomposite-based biosensor is presented that is modified by unique antisense single-stranded DNA (ssDNA) and uses the electrochemical detection methods of DPV, CV, and EIS to early detect miR-122 as a breast cancer biomarker in real clinical samples. This fabrication method is based on advanced nanotechnology, at which a poly(n-butyl acrylate) (PBA) as a non-conductive polymer transforms into a conductive composite by incorporating Au-MXene QD. This biosensor had a limit of detection (LOD) of 0.8 zM and a linear range from 0.001 aM to 1000 nM, making it capable of detecting the low concentrations of miR-122 in patient samples. Moreover, it allows approximately 100% sensitivity and 100% specificity for miR-122 without extraction. The synthesis and detection characteristics were evaluated by different complementary tests such as AFM, FTIR, TEM, and FESEM. This new biosensor can have a high potential in clinical applications to detect breast cancer early and hence improve patient outcomes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohammadi M, Goodarzi M, Jaafari M, Mirzaei H, Mirzaei H (2016) Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma. Cancer Gene Ther 23(11):371–372

    Article  CAS  PubMed  Google Scholar 

  2. Wozniak MB, Scelo G, Muller DC, Mukeria A, Zaridze D, Brennan P (2015) Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS ONE 10(5):e0125026

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saleh AA, Soliman SE, Habib MSE-d, Gohar SF, Abo-Zeid GS (2019) Potential value of circulatory microRNA122 gene expression as a prognostic and metastatic prediction marker for breast cancer. Mol Biol Rep 46:2809–2818

    Article  CAS  PubMed  Google Scholar 

  4. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17(2):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Khoury V, Pierson S, Kaoma T, Bernardin F, Berchem G (2016) Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci Rep 6(1):19529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H (2020) Electrochemical biosensors for detection of microRNA as a cancer biomarker: Pros and cons. Biosensors 10(11):186

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hatamluyi B, Lorestani F, Es’haghi Z (2018) Au/Pd@ rGO nanocomposite decorated with poly (L-cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosens Bioelectron 120:22–29

    Article  CAS  PubMed  Google Scholar 

  8. Mittal S, Kaur H, Gautam N, Mantha AK (2017) Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron 88:217–231

    Article  CAS  PubMed  Google Scholar 

  9. Ranjbari S, Darroudi M, Hatamluyi B, Arefinia R, Aghaee-Bakhtiari SH, Rezayi M et al (2022) Application of MXene in the diagnosis and treatment of breast cancer: a critical overview. Front Bioeng Biotechnol 10:984336

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ebrahimi A, Nikokar I, Zokaei M, Bozorgzadeh E (2018) Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in Triple Negative Breast Cancer. Talanta 189:592–598

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Zhu S, Wei Y, Liu X, Jiao S, Yang J (2019) Ultrasensitive detection of miRNA-155 based on controlled fabrication of AuNPs@ MoS2 nanostructures by atomic layer deposition. Biosens Bioelectron 144:111660

    Article  CAS  PubMed  Google Scholar 

  12. Ranjbari S, Rezayi M, Arefinia R, Aghaee-Bakhtiari SH, Hatamluyi B, Pasdar A (2023) A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer. Talanta 255:124247

    Article  CAS  PubMed  Google Scholar 

  13. Miao P, Wang B, Yu Z, Zhao J, Tang Y (2015) Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification. Biosens Bioelectron 63:365–370

    Article  CAS  PubMed  Google Scholar 

  14. Meinderink D, Orive A, Grundmeier G (2018) Electrodeposition of poly (acrylic acid) on stainless steel with enhanced adhesion properties. Surf Interface Anal 50(11):1224–1229

    Article  CAS  Google Scholar 

  15. Smith DA, Newbury LJ, Drago G, Bowen T, Redman JE (2017) Electrochemical detection of urinary microRNAs via sulfonamide-bound antisense hybridisation. Sens Actuators, B Chem 253:335–341

    Article  CAS  PubMed  Google Scholar 

  16. Khodadoust A, Nasirizadeh N, Seyfati SM, Taheri RA, Ghanei M, Bagheri H (2023) High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers. Talanta 252:123863

    Article  CAS  PubMed  Google Scholar 

  17. Mahmood M, Rasheed A, Ayman I, Rasheed T, Munir S, Ajmal S et al (2021) Synthesis of ultrathin MnO2 nanowire-intercalated 2D-MXenes for high-performance hybrid supercapacitors. Energy Fuels 35(4):3469–3478

    Article  CAS  Google Scholar 

  18. Lee E, VahidMohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim D-J (2017) Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces 9(42):37184–37190

    Article  CAS  PubMed  Google Scholar 

  19. Enríquez JMH, Lajas LAC, Alamilla RG, Alamilla PG, Handy EB, Galindo GC, Serrano LAG (2013) Synthesis of solid acid catalysts based on TiO2-SO42-and Pt/TiO2-SO42-applied in n-hexane isomerization. Open J Metal 2013(3):34–44

  20. Khan AR, Husnain SM, Shahzad F, Mujtaba-ul-Hassan S, Mehmood M, Ahmad J et al (2019) Two-dimensional transition metal carbide (Ti 3 C 2 T x) as an efficient adsorbent to remove cesium (Cs+). Dalton Trans 48(31):11803–11812

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Sun XS (2015) Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC Adv 5(55):44009–44017

    Article  CAS  Google Scholar 

  22. Yılmaz O, Özkan ÇK, Yılmaz CN, Yorgancıoğlu A, Özgünay H, Karavana HA (2017) Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization. AIP Confer Proc 1918(1):020006

  23. Wang G (2011) Synthesis of poly (n-butyl acrylate) homopolymers by activators generated by electron transfer (AGET) ATRP using FeCl3· 6H2O/succinic acid catalyst. Iran Polym J 20(11):931–938

    CAS  Google Scholar 

  24. Oh SJ, Lee SC, Park SY (2006) Photopolymerization and photobleaching of n-butyl acrylate/fumed silica composites monitored by real time FTIR-ATR spectroscopy. Vib Spectrosc 42(2):273–277

    Article  CAS  Google Scholar 

  25. Tsekenis G, Chatzipetrou M, Tanner J, Chatzandroulis S, Thanos D, Tsoukalas D et al (2012) Surface functionalization studies and direct laser printing of oligonucleotides toward the fabrication of a micromembrane DNA capacitive biosensor. Sens Actuators, B Chem 175:123–131

    Article  CAS  Google Scholar 

  26. Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J (2018) Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens Bioelectron 100:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Wang A-J, Yuan P-X, Luo X, Xue Y, Feng J-J (2019) Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 132:294–301

    Article  CAS  PubMed  Google Scholar 

  28. Zare H, Meshkat Z, Hatamluyi B, Rezayi M, Ghazvini K, Derakhshan M et al (2022) The first diagnostic test for specific detection of Mycobacterium simiae using an electrochemical label-free DNA nanobiosensor. Talanta 238:123049

    Article  CAS  PubMed  Google Scholar 

  29. Hatamluyi B, Sadeghian R, Sany SBT, Alipourfard I, Rezayi M (2021) Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 234:122662

    Article  CAS  PubMed  Google Scholar 

  30. Hryniewicz BM, Volpe J, Bach-Toledo L, Kurpel KC, Deller AE, Soares AL et al (2022) Development of polypyrrole (nano) structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Mater Today Chem 24:100817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen TQ, Breitkopf C (2018) Determination of diffusion coefficients using impedance spectroscopy data. J Electrochem Soc 165(14):E826–E831

    Article  CAS  Google Scholar 

  32. Eskandari M, Faridbod F (2018) A printable voltammetric genosensor for tumour suppressor gene screening based on a nanocomposite of Ceria NPs–GO/nano-PANI. New J Chem 42(19):15655–15662

    Article  CAS  Google Scholar 

  33. Lu L, Liu C, Miao W, Wang X, Guo G (2020) Ultrasensitive detection of miRNA based on efficient immobilization of probe and electrochemiluminescent quenching of Ru (bpy) 32+ by methylene blue. Anal Chim Acta 1093:52–60

    Article  CAS  PubMed  Google Scholar 

  34. Kapoor A, Ritter J, Yang RT (1990) An extended Langmuir model for adsorption of gas mixtures on heterogeneous surfaces. Langmuir 6(3):660–664

    Article  CAS  Google Scholar 

  35. Hatamluyi B, Rezayi M, Jamehdar SA, Rizi KS, Mojarrad M, Meshkat Z et al (2022) Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 207:114209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Khorasan Razavi Gas Co. for providing us with the laboratory facilities required for conducting the experiments for the present study.

Funding

This study was financially supported by (1) Ferdowsi University of Mashhad (Grant No.55634), Mashhad, Iran, and (2) Cancer Research Center, Shahid Beheshti University of Medical Sciences (Grant No. 29339), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Arefinia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Majid Rezayi is the corresponding author who died while conducting the research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2232 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbari, S., Hatamluyi, B., Aghaee-Bakhtiari, S.H. et al. A label-free electrochemical biosensor based on PBA-Au-MXene QD for miR-122 detection in serum samples. Microchim Acta 190, 482 (2023). https://doi.org/10.1007/s00604-023-06062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06062-w

Keywords

Navigation