Skip to main content
Log in

Electrochemical impedance biosensor based on Y chromosome–specific sequences for fetal sex determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new electrochemical biosensor based on the sequence of chromosome Y (SRY) has been introduced to determine the gender of the fetus. At first, the DNA probe was designed based on the SRY gene sequence on chromosome Y. Then, a suitable functional group was added to the DNA probe, and it has been immobilized on the surface of the electrode modified with a nanocomposite containing Cu(OH)2 @N–C n-boxes. This substrate causes more DNA probes to connect to the electrode surface by increasing the effective surface area. The presence of the SRY sequence in the DNA sample extracted from blood was detected by the electrochemical signal of the bio-sensor. After optimizing the parameters, the fabricated genosensor showed linear responses in the two concentration ranges containing 0.5 fM to 50 pM and 50 pM to 500 nM. The limit of detection (LOD) for the proposed method was 0.16 fM. The proposed genosensor has been successfully used to determine the gender of the fetus using cell-free fetal DNA (cffDNA) in the blood plasma of several pregnant mothers. This method has advantages such as being simple, portable, accurate, and non-invasive for early determination of the gender of the fetus and early diagnosis of X-linked genetic disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avent ND, Chitty LS (2006) Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 26:598–603. https://doi.org/10.1002/pd.1493

    Article  CAS  PubMed  Google Scholar 

  2. Mujezinovic F, Alfirevic Z (2007) Gynecology. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol 110:687–694. https://doi.org/10.1097/01.AOG.0000278820.54029.e3

    Article  PubMed  Google Scholar 

  3. Jacob RR, Saxena R, Verma IC (2015) Noninvasive diagnosis of fetal gender: utility of combining DYS14 and SRY. Genet Test Mol Biomarkers 19:505–511. https://doi.org/10.1089/gtmb.2015.0040

    Article  CAS  PubMed  Google Scholar 

  4. Wang T, He Q, Li H et al (2016) An optimized method for accurate fetal sex prediction and sex chromosome aneuploidy detection in non-invasive prenatal testing. Plos One 11:e0159648. https://doi.org/10.1371/journal.pone.0159648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo YD, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487. https://doi.org/10.1016/S0140-6736(97)02174-0

    Article  CAS  PubMed  Google Scholar 

  6. Khorshid HRK, Zargari M, Sadeghi MR, Edallatkhah H, Shahhosseiny MH, Kamali K (2013) Early fetal gender determination using real-time PCR analysis of cell-free fetal DNA during 6th-10th weeks of gestation. Acta Medica Iranica 51(4):209–214. https://acta.tums.ac.ir/index.php/acta/article/view/4460

  7. Malmir M, Arjomandi J, Khosroshahi AG, Moradi M, Shi H (2021) Label-free E-DNA biosensor based on PANi-RGO-G* NPs for detection of cell-free fetal DNA in maternal blood and fetal gender determination in early pregnancy. Biosens Bioelectron 189:113356. https://doi.org/10.1016/j.bios.2021.113356

    Article  CAS  PubMed  Google Scholar 

  8. Benvidi A, Rajabzadeh N, Mazloum-Ardakani M et al (2014) Simple and label-free electrochemical impedance amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens Bioelectron 58:145–152. https://doi.org/10.1016/j.bios.2014.01.053

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600. https://doi.org/10.1016/j.bios.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  10. Amini B, Kamali M, Salouti M, Yaghmaei P (2017) Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of exotoxin A gene sequence. Biosens Bioelectron 92:679–686. https://doi.org/10.1016/j.bios.2016.10.030

    Article  CAS  PubMed  Google Scholar 

  11. Tajik S, Beitollahi H, Nejad FG et al (2021) Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Ind Eng Chem Res 60:1112–1136. https://doi.org/10.1021/acs.iecr.0c04952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Zhang L, Wan S et al (2017) Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 11:3943–3949. https://doi.org/10.1021/acsnano.7b00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk V (2017) Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem Rev 117:12942–13038. https://doi.org/10.1021/acs.chemrev.7b00088

    Article  CAS  PubMed  Google Scholar 

  14. Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2021) A simple and sensitive approach for the electrochemical determination of amaranth by a Pd/GO nanomaterial-modified screen-printed electrode. RSC Adv 11:278–287. https://doi.org/10.1039/d0ra08723h

    Article  CAS  Google Scholar 

  15. Mazloum-Ardakani M, Heidari M, Naderi M, Sheikh-Mohseni M (2012) Detection of amplified SRY gene by a novel electrochemical biosensor based on gold nanoparticles. Sci Iran 19:913–918. https://doi.org/10.1016/j.scient.2012.01.009

    Article  CAS  Google Scholar 

  16. Fang X, Bai L, Han X, Wang J, Shi A, Zhang Y (2014) Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification. Anal Biochem 460:47–53. https://doi.org/10.1016/j.ab.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  17. Sadighbathi S, Mobed A (2022) Genosensors, a nanomaterial-based platform for microRNA-21 detection, non-invasive methods in early detection of cancer. Clin Chim Acta 530:27–38. https://doi.org/10.1016/j.cca.2022.02.012

    Article  CAS  PubMed  Google Scholar 

  18. Farokhi S, Roushani M, Hosseini H (2020) Design of an electrochemical aptasensor based on porous nickel-cobalt phosphide nanodiscs for the impedimetric determination of ractopamine. J Electroanal Chem 877:114557. https://doi.org/10.1016/j.jelechem.2020.114557

    Article  CAS  Google Scholar 

  19. Farokhi S, Roushani M, Saedi Z (2023) Fabrication of an electrochemical aptasensor for the determination of sarcosine based on synthesized CuCo2O4 nanosheets. Anal Methods 15:4938–4945. https://doi.org/10.1039/D3AY01149F

    Article  CAS  PubMed  Google Scholar 

  20. Farokhi S, Roushani M (2023) Flower-like core-shell nanostructures based on natural asphalt coated with Ni-LDH nanosheets as an electrochemical platform for prostate cancer biomarker sensing. Microchim Acta 190(5):198. https://doi.org/10.1007/s00604-023-05779-y

    Article  CAS  Google Scholar 

  21. Sultan SC, Anik Ü (2014) Gr–Pt hybrid NP modified GCPE as label and indicator free electrochemical genosensor platform. Talanta 129:523–528. https://doi.org/10.1016/j.talanta.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  22. Farokhi S, Roushani M, Hosseini H (2020) Advanced core-shell nanostructures based on porous NiCo-P nanodiscs shelled with NiCo-LDH nanosheets as a high-performance electrochemical sensing platform. Electrochim Acta 362:137218. https://doi.org/10.1016/j.electacta.2020.137218

    Article  CAS  Google Scholar 

  23. Rahmati Z, Roushani M, Hosseini H (2021) Three-dimensional NiCo2O4 nanowires encapsulated in nitrogen-doped carbon networks as a high-performance aptamer stabilizer for impedimetric ultrasensitive detection of hepatitis C virus core antigen. Surf Interfaces 22:100813. https://doi.org/10.1016/j.surfin.2020.100813

    Article  CAS  Google Scholar 

  24. Roushani M, Hosseini H, Pakzad B, Rahmati Z (2021) Two-dimensional mesoporous copper hydroxide nanosheets shelled on hollow nitrogen-doped carbon nanoboxes as a high performance aptasensing platform. ACS Sustainable Chem Eng 9:11080–11090. https://doi.org/10.1021/acssuschemeng.1c02822

    Article  CAS  Google Scholar 

  25. Tan J, Zou R, Zhang J et al (2016) Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 8:4742–4747. https://doi.org/10.1039/c5nr08516k

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Lang HP, Yoshikawa G, Gerber C (2012) Optimization of DNA hybridization efficiency by pH-driven nanomechanical bending. Langmuir 28(15):6494–6501. https://doi.org/10.1021/la205066h

    Article  CAS  PubMed  Google Scholar 

  27. Roushani M, Zalpour N (2021) Selective detection of asulam with in-situ dopamine electropolymerization based electrochemical MIP sensor. React Funct Polym 169:105069. https://doi.org/10.1016/j.reactfunctpolym.2021.105069

    Article  CAS  Google Scholar 

  28. Mirau PA, Smith JE, Chávez JL, Hagen JA, Kelley-Loughnane N, Naik R (2018) Structured DNA aptamer interactions with gold nanoparticles. Langmuir 34(5):2139–2146. https://doi.org/10.1021/acs.langmuir.7b02449

    Article  CAS  PubMed  Google Scholar 

  29. Negahdary M (2020) Electrochemical aptasensors based on the gold nanostructures. Talanta 216:120999. https://doi.org/10.1016/j.talanta.2020.120999

    Article  CAS  PubMed  Google Scholar 

  30. Rahaie M, Ostad-Hasanzadeh B, Faridbod F (2021) A novel fluorescence nanobiosensor based on modified graphene quantum dots-HTAB for early detection of fetal sexuality with cell free fetal DNA. J Fluoresc 31:1843–1853. https://doi.org/10.1007/s10895-021-02809-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Ilam University (grant number: IRILU-Sc-000019–21-04).

Author information

Authors and Affiliations

Authors

Contributions

PT: supervision, methodology, funding acquisition, writing—review and editing. SF: investigation, data curation, writing—original draft. GA: investigation, data curation, writing—original draft. MR: conceptualization, methodology, supervision, writing—review and editing.

Corresponding authors

Correspondence to Parisa Tahmasebi or Mahmoud Roushani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, P., Farokhi, S., Ahmadi, G. et al. Electrochemical impedance biosensor based on Y chromosome–specific sequences for fetal sex determination. Microchim Acta 190, 483 (2023). https://doi.org/10.1007/s00604-023-06061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06061-x

Keywords

Navigation