Skip to main content
Log in

Impedimetric sensing platform for sensitive carbendazim detection using MOCVD-synthesized copper graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanostructures of graphene were synthesized for electrochemical carbendazim (CBZ) fungicide detection via metal–organic chemical vapor deposition (MOCVD). The arduous process of graphene transfer is eliminated by this innovative approach to MOCVD graphene development. It also generates several defects and impurities and ultimately leads to the uniform deposition of graphene on SiO2/Si. SEM, EDX, and ICP-AES were used to assess the morphological properties and chemical composition of the materials. To obtain in-depth knowledge of the entire system, the electrochemical behavior was also investigated using voltammetric techniques and electrochemical impedance spectroscopy. The interaction of particles of copper with CBZ and the enhanced surface area of graphene, which causes a strong oxidation current, has been demonstrated to achieve the ideal CBZ sensing behavior. The electrode responded linearly at CBZ concentration levels of 1 to 50 nM, and the sensitivity of the sensing materials was estimated to be 0.0337 Ω nM−1. The statistical analysis validates the electrode’s exceptional selectivity and remarkable reproducibility in determining CBZ.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Zhou Y, Li Y, Han P, et al (2019) A novel low-dimensional heteroatom doped Nd2O3 nanostructure for enhanced electrochemical sensing of carbendazim. New J Chem 43:14009–14019. https://doi.org/10.1039/c9nj02778e

  2. Joseph XB, Baby JN, Wang SF, et al (2021) Interfacial superassembly of Mo2C@NiMn-LDH frameworks for electrochemical monitoring of carbendazim fungicide. ACS Sustain Chem Eng 9(44):14900–14910. https://doi.org/10.1021/acssuschemeng.1c05056

  3. Suresh I, Selvaraj S, Nesakumar N et al (2021) Nanomaterials based non-enzymatic electrochemical and optical sensors for the detection of carbendazim: a review. Trends Environ Anal Chem 31:e00137. https://doi.org/10.1016/j.teac.2021.e00137

  4. Beigmoradi F, Rohani Moghadam M, Bazmandegan-Shamili A, Masoodi HR (2022) Electrochemical sensor based on molecularly imprinted polymer coating on metal–organic frameworks for the selective and sensitive determination of carbendazim. Microchem J 179:107633. https://doi.org/10.1016/J.MICROC.2022.107633

    Article  CAS  Google Scholar 

  5. Lima T, Silva HTD, Labuto G et al (2016) An experimental design for simultaneous determination of carbendazim and fenamiphos by electrochemical method. Electroanalysis 28(4):817–822. https://doi.org/10.1002/elan.201500568

    Article  CAS  Google Scholar 

  6. Singh S, Singh N, Kumar V et al (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329. https://doi.org/10.1007/s10311-016-0566-2

    Article  CAS  Google Scholar 

  7. Mahdavi V, Eslami Z, Golmohammadi G, et al (2021) Simultaneous determination of multiple pesticide residues in Iranian saffron: a probabilistic health risk assessment. J Food Compos Anal 100:103915. https://doi.org/10.1016/j.jfca.2021.103915

  8. Liu R, Li B, Li F, et al (2022) A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem 384:132573. https://doi.org/10.1016/j.foodchem.2022.132573

  9. Özcan A, Hamid F, Özcan AA (2021) Synthesizing of a nanocomposite based on the formation of silver nanoparticles on fumed silica to develop an electrochemical sensor for carbendazim detection. Talanta 222:121591. https://doi.org/10.1016/j.talanta.2020.121591

  10. Razzino CA, Sgobbi LF, Canevari TC et al (2015) Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chem 170:360–365. https://doi.org/10.1016/j.foodchem.2014.08.085

    Article  CAS  PubMed  Google Scholar 

  11. SakthiPriya T, Nataraj N, Chen T-W et al (2022) Synergistic formation of samarium oxide/graphene nanocomposite: a functional electrocatalyst for carbendazim detection. Chemosphere 307:135711. https://doi.org/10.1016/j.chemosphere.2022.135711

    Article  CAS  Google Scholar 

  12. Li W, Wang P, Chu B et al (2023) A highly-sensitive sensor based on carbon nanohorns@reduced graphene oxide coated by gold platinum core–shell nanoparticles for electrochemical detection of carbendazim in fruit and vegetable juice. Food Chem 402:134197. https://doi.org/10.1016/j.foodchem.2022.134197

    Article  CAS  PubMed  Google Scholar 

  13. Chen M, Zhao Z, Lan X et al (2015) Determination of carbendazim and metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry. Measurement (Lond) 73:313–317. https://doi.org/10.1016/j.measurement.2015.05.006

    Article  Google Scholar 

  14. Pourreza N, Rastegarzadeh S, Larki A (2015) Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry. Talanta 134:24–29. https://doi.org/10.1016/j.talanta.2014.10.056

    Article  CAS  PubMed  Google Scholar 

  15. Mozzaquatro J de O, César IA, Pinheiro AEB, Caldas ED (2022) Pesticide residues analysis in passion fruit and its processed products by LC–MS/MS and GC–MS/MS: method validation, processing factors and dietary risk assessment. Food Chem 375:131643. https://doi.org/10.1016/j.foodchem.2021.131643

  16. Barahona F, Gjelstad A, Pedersen-Bjergaard S, Rasmussen KE (2010) Hollow fiber-liquid-phase microextraction of fungicides from orange juices. J Chromatogr A 1217(13):1989–1994. https://doi.org/10.1016/j.chroma.2010.01.077

    Article  CAS  PubMed  Google Scholar 

  17. Ruiyi L, Yanhong J, Qinsheng W, et al (2021) Serine and histidine-functionalized graphene quantum dot with unique double fluorescence emission as a fluorescent probe for highly sensitive detection of carbendazim. Sens Actuators B Chem 343:130099. https://doi.org/10.1016/j.snb.2021.130099

  18. Peng G, Gao F, Zou J et al (2022) One-step electrochemical synthesis of tremella-like Co-MOFs/carbon nanohorns films for enhanced electrochemical sensing of carbendazim in vegetable and fruit samples. J Electroanal Chem 918:116462. https://doi.org/10.1016/j.jelechem.2022.116462

    Article  CAS  Google Scholar 

  19. Yamuna A, Chen TW, Chen SM, Jiang TY (2021) Facile synthesis of single-crystalline Fe-doped copper vanadate nanoparticles for the voltammetric monitoring of lethal hazardous fungicide carbendazim. Microchimica Acta 188:1–12. https://doi.org/10.1007/s00604-021-04941-8

    Article  CAS  Google Scholar 

  20. Li Y, Feng Y, Chen S et al (2022) Signal on–off ratiometric electrochemical sensor coupled with a molecularly imprinted polymer for the detection of carbendazim. Microchim Acta 189:250. https://doi.org/10.1007/s00604-022-05341-2

    Article  CAS  Google Scholar 

  21. Krishnapandi A, Babulal SM, Chen S-M et al (2023) Surface etched carbon nanofiber companied ytterbium oxide for pinch level detection of fungicides carbendazim. J Environ Chem Eng 11:109059. https://doi.org/10.1016/j.jece.2022.109059

    Article  CAS  Google Scholar 

  22. Laschuk NO, Easton EB, Zenkina OV (2021) Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv 11:27925–27936. https://doi.org/10.1039/D1RA03785D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furst AL, Francis MB (2019) Impedance-based detection of bacteria. Chem Rev 119:700–726. https://doi.org/10.1021/acs.chemrev.8b00381

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Murphy A, O’Riordan A, O’Connell I (2021) Equivalent impedance models for electrochemical nanosensor-based integrated system design. Sensors 21(9):3259. https://doi.org/10.3390/s21093259

  25. Nasir T, Kim BJ, Lee SH et al (2022) Wafer-scale growth of 3D graphene on SiO2 by remote metal catalyst-assisted MOCVD and its application as a NO2 gas sensor. Cryst Growth Des 22:4192–4202. https://doi.org/10.1021/acs.cgd.2c00197

    Article  CAS  Google Scholar 

  26. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334. https://doi.org/10.1039/C0JM02126A

    Article  CAS  Google Scholar 

  27. Nasir T, Kim BJ, Hassnain M, et al (2020) plasticized polystyrene by addition of -diene based molecules for defect-less CVD graphene transfer. Polymers (Basel) 12(8):1839. https://doi.org/10.3390/polym12081839

  28. Leong WS, Wang H, Yeo J et al (2019) Paraffin-enabled graphene transfer. Nat Commun 10:867. https://doi.org/10.1038/s41467-019-08813-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nasir T, Kim BJ, Kim K-W et al (2018) Design of softened polystyrene for crack- and contamination-free large-area graphene transfer. Nanoscale 10:21865–21870. https://doi.org/10.1039/C8NR05611K

    Article  CAS  PubMed  Google Scholar 

  30. Buckley DJ, Black NCG, Castanon EG et al (2020) Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2d Mater 7:32002. https://doi.org/10.1088/2053-1583/ab7bc5

    Article  CAS  Google Scholar 

  31. Tian C, Zhang S, Wang H et al (2019) Three-dimensional nanoporous copper and reduced graphene oxide composites as enhanced sensing platform for electrochemical detection of carbendazim. J Electroanal Chem 847:113243. https://doi.org/10.1016/j.jelechem.2019.113243

    Article  CAS  Google Scholar 

  32. Dong Y, Yang L, Zhang L (2017) Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J Agric Food Chem 65:727–736. https://doi.org/10.1021/acs.jafc.6b04675

    Article  CAS  PubMed  Google Scholar 

  33. Feroze MT, Doonyapisut D, Kim B, Chung C-H (2023) Impedimetric sensing platform based on copper oxide with activated carbon for sensitive detection of amoxicillin. Korean J Chem Eng 40:1014–1022. https://doi.org/10.1007/s11814-022-1366-y

    Article  CAS  Google Scholar 

  34. Yamuna A, Chen T-W, Chen S-M, Jiang T-Y (2021) Facile synthesis of single-crystalline Fe-doped copper vanadate nanoparticles for the voltammetric monitoring of lethal hazardous fungicide carbendazim. Microchim Acta 188:277. https://doi.org/10.1007/s00604-021-04941-8

    Article  CAS  Google Scholar 

  35. Li Z, Deng L, Kinloch IA, Young RJ (2023) Raman spectroscopy of carbon materials and their composites: graphene, nanotubes and fibres. Prog Mater Sci 135:101089. https://doi.org/10.1016/j.pmatsci.2023.101089

    Article  CAS  Google Scholar 

  36. Dutta A, Hasan MdM, Miah MdR et al (2021) Efficient sensing of hydrogen peroxide via electrocatalytic oxidation reactions using polycrystalline Au electrode modified with controlled thiol group immobilization. Electrochim Acta 395:139217. https://doi.org/10.1016/j.electacta.2021.139217

    Article  CAS  Google Scholar 

  37. Ya Y, Wang T, Xie L et al (2015) Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim. Anal Methods 7:1493–1498. https://doi.org/10.1039/C4AY02748E

    Article  CAS  Google Scholar 

  38. Ashrafi AM, Đorđević J, Guzsvány V et al (2012) Trace determination of carbendazim fungicide using adsorptive stripping voltammetry with a carbon paste electrode containing tricresyl phosphate. Int J Electrochem Sci 7(10):9717–9731. https://doi.org/10.1016/S1452-3981(23)16232-8

    Article  CAS  Google Scholar 

  39. Gao X, Gao Y, Bian C et al (2019) Electroactive nanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion. Electrochim Acta 310:78–85. https://doi.org/10.1016/j.electacta.2019.04.120

    Article  CAS  Google Scholar 

  40. Santana PCA, Lima JBS, Santana TBS et al (2019) Semiconductor nanocrystals-reduced graphene composites for the electrochemical detection of carbendazim. J Braz Chem Soc 30:1302–1308. https://doi.org/10.21577/0103-5053.20190026

    Article  CAS  Google Scholar 

  41. Xie Y, Gao F, Tu X et al (2019) Facile synthesis of mxene/electrochemically reduced graphene oxide composites and their application for electrochemical sensing of carbendazim. J Electrochem Soc 166:B1673. https://doi.org/10.1149/2.0091916jes

    Article  CAS  Google Scholar 

  42. Razzino CA, Sgobbi LF, Canevari TC et al (2015) Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chem 170:360–365. https://doi.org/10.1016/j.foodchem.2014.08.085

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro WF, Selva TMG, Lopes IC et al (2011) Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with a multiwalled carbon nanotubes modified electrode. Anal Methods 3:1202–1206. https://doi.org/10.1039/C0AY00723D

    Article  CAS  Google Scholar 

  44. Sundaresan P, Fu C-C, Liu S-H, Juang R-S (2021) Facile synthesis of chitosan-carbon nanofiber composite supported copper nanoparticles for electrochemical sensing of carbendazim. Colloids Surf Physicochem Eng Asp 625:126934. https://doi.org/10.1016/j.colsurfa.2021.126934

    Article  CAS  Google Scholar 

  45. Yang Y, Chen Z, Wang Q et al (2022) Electrochemical sensors based on reduced holey graphene for detection of carbendazim. Physica Status Solidi (a) 219:2100412. https://doi.org/10.1002/pssa.202100412

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Basic Science Research Program and Basic Research Laboratory through the National Research Foundation of Korea (NRF), funded by grants from the Ministry of Science (NRF-2022R1A2B5B01001764, NRF-2021R1A4A1024129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Hwa Chung.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feroze, M.T., Doonyapisut, D., Gudal, C.C. et al. Impedimetric sensing platform for sensitive carbendazim detection using MOCVD-synthesized copper graphene. Microchim Acta 190, 489 (2023). https://doi.org/10.1007/s00604-023-06060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06060-y

Keywords

Navigation