Skip to main content
Log in

Development of an electrochemical biosensor utilizing a combined aptamer and MIP strategy for the detection of the food allergen lysozyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This study aims to develop a MIP-Apt-based electrochemical biosensor for the sensitive and selective determination of Lysozyme (Lyz), a food allergen. For the development of the sensor, in the first stage, modifications were made to the screen-printed electrode (SPE) surface with graphene oxide (GO) and gold nanoparticles (AuNPs) to increase conductivity and surface area. The advantages of using aptamer (Apt) and molecularly imprinted polymer (MIP) technology were combined in a single biointerface in the prepared sensing tool. Surface characterization of the biosensor was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurements, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A wide linear range from 0.001 to 100 pM was obtained under optimized conditions for the determination of Lyz detection using the proposed MIP-Apt sensing strategy. The limit of detection (LOD) and limit of quantification (LOQ) for Lyz were 3.67 fM and 12 fM, respectively. This biosensor displays high selectivity, repeatability, reproducibility, and long storage stability towards Lyz detection. The results show that a sensitive and selective sensor fabrication is achieved compared with existing methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article. Data available on request.

References

  1. Vasilescu A, Polonschii C, Titoiu AM, Mishra R, Peteu S, Marty JL (2020) Bioassays and biosensors for food analysis. Elsevier Inc., pp 217–258. https://doi.org/10.1016/B978-0-12-818592-6.00009-8

  2. Khedri M, Ramezani M, Rafatpanah H, Abnous K (2018) Detection of food-born allergens with aptamer-based biosensors. TrAC - Trends Anal Chem 103:126–136. https://doi.org/10.1016/j.trac.2018.04.001

    Article  CAS  Google Scholar 

  3. Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV (2018) Nano-biosensor platforms for detecting food allergens – new trends. Sens Bio-Sens 18:13–30. https://doi.org/10.1016/j.sbsr.2018.02.005

    Article  Google Scholar 

  4. Hosu O, Selvolini G, Marrazza G (2018) Recent advances of immunosensors for detecting food allergens. Curr Opin Electrochem 10:149–156. https://doi.org/10.1016/j.coelec.2018.05.022

    Article  CAS  Google Scholar 

  5. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L (2019) Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 142:111449. https://doi.org/10.1016/j.bios.2019

    Article  CAS  PubMed  Google Scholar 

  6. Shin JH, Reddy YVM, Park TJ, Park JP (2022) Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 371. https://doi.org/10.1016/j.foodchem.2021.131120.

  7. Dhanapala P, De Silva C, Doran T, Suphioglu C (2015) Cracking the egg: an insight into egg hypersensitivity. Mol Immunol 66:375–383. https://doi.org/10.1016/j.molimm.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Gupta GH, Singh G, More N, Keerthana M, Sharma A, Jawade D, Balu A, Kapusetti G (2023) Ultrahigh sensitive graphene oxide/conducting polymer composite based biosensor for cholesterol and bilirubin detection. Biosens Bioelectron X 13:100290. https://doi.org/10.1016/j.biosx.2022.100290

    Article  CAS  Google Scholar 

  9. Vasilescu A, Wang Q, Li M, Boukherroub R, Szunerits S (2016) Aptamer-based electrochemical sensing of lysozyme. Chemosensors 4:1–20. https://doi.org/10.3390/chemosensors4020010

    Article  CAS  Google Scholar 

  10. Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN (2022) Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Biosci 47. https://doi.org/10.1016/j.fbio.2022.101695

  11. Sheng K, Jiang H, Fang Y, Wang L, Jiang D (2022) Emerging electrochemical biosensing approaches for detection of allergen in food samples: a review. Trends Food Sci Technol 121:93–104. https://doi.org/10.1016/j.tifs.2022.01.033

    Article  CAS  Google Scholar 

  12. Pareek S, Jain U, Bharadwaj M, Saxena K, Roy S, Chauhan N (2023) An ultrasensitive electrochemical DNA biosensor for monitoring human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal Biochem 663:115015. https://doi.org/10.1016/j.ab.2022.115015

    Article  CAS  PubMed  Google Scholar 

  13. Zuñiga J, Akashi L, Pinheiro T, Rivera M, Barreto L, Albertin KF, Champi A (2022) Synthesis of lysozyme-reduced graphene oxide films for biosensor applications. Diamond Relat Mater 126. https://doi.org/10.1016/j.diamond.2022.109093

  14. Samoson K, Soleh A, Saisahas K, Promsuwan K, Saichanapan J, Kanatharana P, Thavarungkul P, Chang KH, Lim Abdullah AF, Tayayuth K, Limbut W (2022) Facile fabrication of a flexible laser induced gold nanoparticle/chitosan/ porous graphene electrode for uric acid detection. Talanta 243:123319. https://doi.org/10.1016/j.talanta.2022.123319

    Article  CAS  PubMed  Google Scholar 

  15. Lu H, Huang Y, Cui H, Li L, Ding Y (2022) A molecularly imprinted electrochemical aptasensor based on zinc oxide and co-deposited gold nanoparticles/reduced graphene oxide composite for detection of amoxicillin. Microchim Acta 189:1–11. https://doi.org/10.1007/s00604-022-05497-x

    Article  CAS  Google Scholar 

  16. Ashikbayeva Z, Bekmurzayeva A, Myrkhiyeva Z (2023) Green-synthesized gold nanoparticle-based optical fiber ball resonator biosensor for cancer biomarker detection. Opt Laser Technol 161:109136. https://doi.org/10.1016/j.optlastec.2023.109136

    Article  CAS  Google Scholar 

  17. Aydoğdu Tığ G, Pekyardımcı Ş (2020) An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 210:120666. https://doi.org/10.1016/j.talanta.2019.120666

    Article  CAS  PubMed  Google Scholar 

  18. Lian Y, He F, Mi X, Tong F, Shi X (2014) Lysozyme aptamer biosensor based on electron transfer from SWCNTs to SPQC-IDE. Sens Actuators B 199:377–383. https://doi.org/10.1016/j.snb.2014.04.001

    Article  CAS  Google Scholar 

  19. Senturk H, Eksin E, Işık Ö, İlaslan Z, Mısırlı F, Erdem A (2021) Impedimetric aptasensor for lysozyme detection based on carbon nanofibres enriched screen-printed electrodes. Electrochim Acta 377. https://doi.org/10.1016/j.electacta.2021.138078

  20. Liang A, Tang B, Hou HP, Sun L, Luo AQ (2019) A novel CuFe2O4 nanospheres molecularly imprinted polymers modified electrochemical sensor for lysozyme determination. J Electroanal Chem 853:113465. https://doi.org/10.1016/j.jelechem.2019.113465

    Article  CAS  Google Scholar 

  21. Mahmoud AM, Alkahtani SA, Alyami BA, El-Wekil MM (2020) Dual-recognition molecularly imprinted aptasensor based on gold nanoparticles decorated carboxylated carbon nanotubes for highly selective and sensitive determination of histamine in different matrices. Anal Chim Acta 1133:58–65. https://doi.org/10.1016/j.aca.2020.08.001

    Article  CAS  PubMed  Google Scholar 

  22. You M, Yang S, An Y, Zhang F, He P (2020) A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem 862. https://doi.org/10.1016/j.jelechem.2020.114017

  23. Doostmohammadi A, Youssef K, Akhtarian S, Tabesh E, Kraft G, Brar SK, Rezai P (2022) Molecularly imprinted polymer (MIP) based core-shell microspheres for bacteria isolation. Polymer 251:124917. https://doi.org/10.1016/j.polymer.2022.124917. (Guildf)

    Article  CAS  Google Scholar 

  24. Aydoğdu Tığ G, Bolat EÖ, Zeybek B, PekyardImcI Ş (2016) Hesperidin-dsDNA interaction based on electrochemically reduced graphene oxide and poly-(2,6-pyridinedicarboxylic acid) modified glas sy carbon electrode. Hacettepe J Biol Chem 44:487–497

    Google Scholar 

  25. Shen M, Kan X (2021) Aptamer and molecularly imprinted polymer: synergistic recognition and sensing of dopamine. Electrochim Acta 367:137433. https://doi.org/10.1016/j.electacta.2020.137433

    Article  CAS  Google Scholar 

  26. Jalalvand AR (2019) Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int J Biol Macromol 126:1065–1073. https://doi.org/10.1016/j.ijbiomac.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  27. Yan SR, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, RezaeiZadeBaravati N, Aramesh-Boroujeni Z, Foong LK (2020) A review: recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 155:184–207. https://doi.org/10.1016/j.ijbiomac.2020.03.173

    Article  CAS  PubMed  Google Scholar 

  28. Farokhi S, Roushani M, Hosseini H (2020) Design of an electrochemical aptasensor based on porous nickel-cobalt phosphide nanodiscs for the impedimetric determination of ractopamine. J Electroanal Chem 877:114557. https://doi.org/10.1016/j.jelechem.2020.114557

    Article  CAS  Google Scholar 

  29. Roushani M, Farokhi S, Rahmati Z (2022) Development of a dual-recognition strategy for the aflatoxin B1 detection based on a hybrid of aptamer-MIP using a Cu2O NCs/GCE. Microchem J 178:107328. https://doi.org/10.1016/j.microc.2022.107328

    Article  CAS  Google Scholar 

  30. Ghanbari K, Roushani M (2018) A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sens Actuators B 258:1066–1071. https://doi.org/10.1016/j.snb.2017.11.145

    Article  CAS  Google Scholar 

  31. Poma A, Brahmbhatt H, Pendergraff HM, Watts JK, Turner NW (2015) Generation of novel hybrid aptamer-molecularly imprinted polymeric nanoparticles. Adv Mater 27:750–758. https://doi.org/10.1002/adma.201404235

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoudpour M, Torbati M, Mousavi MM, de la Guardia M, EzzatiNazhadDolatabadi J (2020) Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TrAC - Trends Anal Chem 129:115943. https://doi.org/10.1016/j.trac.2020.115943

    Article  CAS  Google Scholar 

  33. Roushani M, Ghanbarzadeh M, Shahdost-Fard F (2021) Fabrication of an electrochemical biodevice for ractopamine detection/molecular impri under a strategy of a double recognition of the aptamernting polymer. Bioelectrochemistry 138:107722. https://doi.org/10.1016/j.bioelechem.2020.107722

    Article  CAS  PubMed  Google Scholar 

  34. Aydoğdu Tığ G, Zeybek B (2023) Gold nanoparticles-electrochemically reduced graphene oxide/poly(indole-5-carboxylic acid) nanocomposite for electrochemical non-enzymatic sensing of hydrogen peroxide. Electroanalysis 35:1–13. https://doi.org/10.1002/elan.202200064

    Article  CAS  Google Scholar 

  35. Shamsipur M, Farzin L, Tabrizi MA (2016) Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchim Acta 183:2733–2743. https://doi.org/10.1007/s00604-016-1920-6

    Article  CAS  Google Scholar 

  36. Liu Z, Wang H (2019) An antifouling interface integrated with HRP-based amplification to achieve a highly sensitive electrochemical aptasensor for lysozyme detection. Analyst 144:5794–5801. https://doi.org/10.1039/c9an01430f

    Article  CAS  PubMed  Google Scholar 

  37. Chen Z, Guo J, Li J, Guo L (2013) Tetrahexahedral Au nanocrystals/aptamer based ultrasensitive electrochemical biosensor. RSC Adv 3:14385–14389. https://doi.org/10.1039/c3ra41065j

    Article  CAS  Google Scholar 

  38. Ortiz-Aguayo D, del Valle M (2018) Label-free aptasensor for lysozyme detection using electrochemical impedance spectroscopy. Sensors 18. https://doi.org/10.3390/s18020354. (Switzerland)

  39. Erkmen C, Tiğ GA, Uslu B (2022) First label-free impedimetric aptasensor based on Au NPs/TiO2 NPs for the determination of leptin. Sens Actuators B 358. https://doi.org/10.1016/j.snb.2022.131420

  40. Sarabaegi M, Roushani M (2021) Rapid and sensitive determination of Pseudomonas aeruginosa by using a glassy carbon electrode modified with gold nanoparticles and aptamer-imprinted polydopamine. Microchem J 168:106388. https://doi.org/10.1016/j.microc.2021.106388

    Article  CAS  Google Scholar 

  41. Rad AO, Azadbakht A (2019) An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim Acta 186. https://doi.org/10.1007/s00604-018-3123-9

  42. Roushani M, Rahmati Z, Hoseini SJ, HashemiFath R (2019) Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf B 183:110451. https://doi.org/10.1016/j.colsurfb.2019.110451

    Article  CAS  Google Scholar 

  43. Ebanks F, Nasrallah H, Garant TM, McConnell EM, DeRosa MC (2023) Colorimetric detection of aflatoxins B1 and M1 using aptamers and gold and silver nanoparticles. Adv Agrochem 2:221–230. https://doi.org/10.1016/j.aac.2023.07.003

    Article  Google Scholar 

  44. Häkkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4:443–455. https://doi.org/10.1038/nchem.1352

    Article  CAS  PubMed  Google Scholar 

  45. Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M, Boukherroub R (2023) Fabrication of a novel electrochemical biosensor based on a molecular imprinted polymer-aptamer hybrid receptor for lysozyme determination. Anal Bioanal Chem 415:899–911. https://doi.org/10.1007/s00216-022-04487-5

    Article  CAS  PubMed  Google Scholar 

  46. Rezaei B, Jamei HR, Ensafi AA (2018) An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosens Bioelectron 115:37–44. https://doi.org/10.1016/j.bios.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  47. Bai X, Huang X, Zhang X, Hua Z, Wang C, Qin Q, Zhang Q (2014) TiO2-graphene nanoparticle based electrochemical sensor for the bimodal-response detection of 4-chlorophenol. RSC Adv 4:13461–13468. https://doi.org/10.1039/c3ra48065h

    Article  CAS  Google Scholar 

  48. Zhu L, Hu Z, Shen Y, Wang Y (2023) Preparation and application of lysozyme molecularly imprinted surface plasmon resonance biosensors. Microchem J 190. https://doi.org/10.1016/j.microc.2023.108665

  49. Karimian N, Vagin M, Zavar MHA, Chamsaz M, Turner APF, Tiwari A (2013) An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosens Bioelectron 50:492–498. https://doi.org/10.1016/j.bios.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  50. Mazzotta E, Rella S, Turco A, Malitesta C (2015) XPS in development of chemical sensors. RSC Adv 5:83164–83186. https://doi.org/10.1039/c5ra14139g

    Article  CAS  Google Scholar 

  51. Chandra P, Noh HB, Won MS, Shim YB (2011) Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron 26:4442–4449. https://doi.org/10.1016/j.bios.2011.04.060

    Article  CAS  PubMed  Google Scholar 

  52. Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, Kanashenko SL, Moshkovskii SA, Kuzikov AV (2023) Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta 257:124341. https://doi.org/10.1016/j.talanta.2023.124341

    Article  CAS  PubMed  Google Scholar 

  53. Tığ GA, Pekyardımcı Ş (2020) An electrochemical sandwich-type aptasensor for determination of lipocalin- 2 based on graphene oxide / polymer composite and gold nanoparticles. Talanta 210:120666. https://doi.org/10.1016/j.talanta.2019.120666

    Article  CAS  Google Scholar 

  54. Parnianchi F, Kashanian S, Nazari M, Santoro C, Bollella P, Varmira K (2021) Highly selective and sensitive molecularly imprinting electrochemical sensing platform for bilirubin detection in saliva. Microchem J 168:106367. https://doi.org/10.1016/j.microc.2021.106367

    Article  CAS  Google Scholar 

  55. Abrori SA, Septiani NLW, Hakim FN, Maulana A, Suyatman N, Anshori I, Yuliarto B (2021) Non-enzymatic electrochemical detection for uric acid based on a glassy carbon electrode modified with MOF-71. IEEE Sens J 21:170–177. https://doi.org/10.1109/JSEN.2020.3014298

    Article  CAS  Google Scholar 

  56. Aydoğdu G, Zeybek DK, Zeybek B, Pekyardımcı Ş (2013) Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. J Appl Electrochem 43:523–531. https://doi.org/10.1007/s10800-013-0536-3

    Article  CAS  Google Scholar 

  57. Kadara RO, Jenkinson N, Banks CE (2009) Characterisation of commercially available electrochemical sensing platforms. Sens Actuators B 138:556–562. https://doi.org/10.1016/j.snb.2009.01.044

    Article  CAS  Google Scholar 

  58. Wei X, Xu X, Qi W, Wu Y, Wang L (2017) Molecularly imprinted polymer/graphene oxide modified glassy carbon electrode for selective detection of sulfanilamide. Prog Nat Sci 27:374–379. https://doi.org/10.1016/j.pnsc.2017.05.001

    Article  CAS  Google Scholar 

  59. Tığ GA, Günendi G, Bolelli TE, Yalçın İ, Pekyardımcı S (2016) Study on interaction between the 2-(2-phenylethyl)-5-methylbenzimidazole and dsDNA using glassy carbon electrode modified with poly-3-amino-1,2,4-triazole-5-thiol. J Electroanal Chem 776:9–17. https://doi.org/10.1016/j.jelechem.2016.06.028

    Article  CAS  Google Scholar 

  60. Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18. https://doi.org/10.1016/j.bios.2012.11.033

    Article  CAS  Google Scholar 

  61. Kor K, Zarei K (2016) Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. Talanta 146:181–187. https://doi.org/10.1016/j.talanta.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  62. Oliveira AEF, Pereira AC, Ferreira LF (2023) Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15–3 in human serum samples. Talanta 252:123819. https://doi.org/10.1016/j.talanta.2022.123819

    Article  CAS  PubMed  Google Scholar 

  63. Alam I, Lertanantawong B, Prongmanee W, Lertvanithphol T, Horprathum M, Sutthibutpong T, Asanithi P (2021) Investigating lysozyme amyloid fibrillization by electrochemical impedance spectroscopy for application in lysozyme sensor. J Electroanal Chem 901:115799. https://doi.org/10.1016/j.jelechem.2021.115799

    Article  CAS  Google Scholar 

  64. Zhao L, Huang Y, Qi X, Yan X, Wang S, Liang X (2020) Nanotetrahedron-assisted electrochemical aptasensor with cooperatively-folding aptamer chimera for sensitive and selective detection of lysozyme in red wines. Anal Chim Acta 1095:172–178. https://doi.org/10.1016/j.aca.2019.10.017

    Article  CAS  PubMed  Google Scholar 

  65. Chen Z, Xu Q, Tang G, Liu S, Xu S, Zhang X (2019) A facile electrochemical aptasensor for lysozyme detection based on target-induced turn-off of photosensitization. Biosens Bioelectron 126:412–417. https://doi.org/10.1016/j.bios.2018.09.074

    Article  CAS  PubMed  Google Scholar 

  66. Di Giulio T, Mazzotta E, Malitesta C (2021) Molecularly imprinted polyscopoletin for the electrochemical detection of the chronic disease marker lysozyme. Biosensors 11. https://doi.org/10.3390/bios11010003

  67. Song K, Chen W (2021) An electrochemical sensor for high sensitive determination of lysozyme based on the aptamer competition approach. Open Chem 19:299–306. https://doi.org/10.1515/chem-2021-0026

    Article  CAS  Google Scholar 

  68. Zhang J, Shang M, Gao Y, Yan J, Song W (2020) High-performance VS2 QDs-based type II heterostructured photoanode for ultrasensitive aptasensing of lysozyme. Sens Actuators B 304:127411. https://doi.org/10.1016/j.snb.2019.127411

    Article  CAS  Google Scholar 

Download references

Funding

This study has been supported by the Ankara University Scientific Research Projects Coordination Unit (Project No: FBA-2022-2628, ADEP). This work was produced from the MSc thesis of Niran Öykü Erdoğan (Ankara University, Graduate School of Natural and Applied Sciences). Niran Öykü Erdoğan also thanks the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK) under the BIDEB/2210-A scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Aydoğdu Tığ.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1479 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, N.Ö., Uslu, B. & Aydoğdu Tığ, G. Development of an electrochemical biosensor utilizing a combined aptamer and MIP strategy for the detection of the food allergen lysozyme. Microchim Acta 190, 471 (2023). https://doi.org/10.1007/s00604-023-06054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06054-w

Keywords

Navigation