Skip to main content
Log in

A colorimetric aptasensor for CA125 determination based on dual catalytic performance of CeO2 nanozyme confined in macroporous silica foam

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable colorimetric aptasensor was constructed based on the dual catalytic performance of CeO2 nanozyme to determine carbohydrate antigen 125 (CA125). Firstly, CeO2 nanozyme was synthesized by calcination and ultrasonically dispersed in a macroporous silica foam (MSF) to form CeO2@MSF. Then the aptamer of CA125 (apt) and complementary DNA (c-DNA) were successively assembled on the CeO2@MSF to construct a CeO2@MSF/apt/c-DNA colorimetric aptasensor, which exhibited excellent oxidase-mimic performance and phosphatase-mimic activity simultaneously. In the presence of CA125, the apt specifically binds to target CA125, and the single-strand c-DNA leaves the CeO2@MSF/apt surface, which is catalytically hydrolyzed by exonuclease I. The produced phosphate ions inhibit the phosphatase-mimic activity of CeO2 nanozyme. Thus, the absorbance at 652 nm of 3,3′,5,5′-tetramethylbenzidine solution containing ascorbic acid-2-phosphate increases with the concentration of CA125. The response is linearly related to the logarithm of CA125 concentration from 1.0 to 10.0 U/mL under optimal experimental conditions. Based on this, the constructed colorimetric aptasensor has a high sensitivity, good selectivity, and high accuracy for CA125 determination in real human serum sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

Data Availability

Data availabe on request.

References

  1. Zhao TT, Hu WP (2016) CA125 and HE4: measurement tools for ovarian cancer. Gynecol Obstet Inves 81:430–435

    Article  CAS  Google Scholar 

  2. Zhu Q, Chai Y, Zhuo Y, Yuan R (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotinestreptavidin signal amplification strategy. Biosens Bioelectron 68:42–48

    Article  CAS  PubMed  Google Scholar 

  3. Zhang K, Shen X (2013) Cancer antigen 125 detection using the plasmon resonance scattering properties of gold nanorods. Analyst 138:1828–1834

    Article  CAS  PubMed  Google Scholar 

  4. Das J, Kelley SO (2011) Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in serum and whole blood. Anal Chem 83:1167–1172

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, Zheng Y, Zhao C et al (2015) Hollow PDA-Au nanoparticles- enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 71:200–206

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Wang S, Lu C et al (2018) Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sensor Actuator B Chem 262:9–16

    Article  Google Scholar 

  7. Hamd-Ghadareh S, Salimi A, Fathi F et al (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA 125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron 96:308–316

    Article  CAS  PubMed  Google Scholar 

  8. van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13:338–344

    Article  PubMed  Google Scholar 

  9. Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Wang X, Wang Q et al (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    Article  CAS  PubMed  Google Scholar 

  11. Zhou X, Wang SL, Zhang C et al (2021) Colorimetric determination of amyloid-beta peptide using MOF-derived nanozyme based on porous ZnO-Co3O4 nanocages. Microchim Acta 188:56

    Article  CAS  Google Scholar 

  12. Chen JX, Wu WW, Huang L et al (2019) Self-indicative gold nanozyme for H2O2 and glucose sensing. Chem-Eur J 25:11940–11944

    Article  CAS  PubMed  Google Scholar 

  13. Korschelt K, Muhammad NT, Wolfgang T (2018) A step into the future: applications of nanoparticle enzyme mimics. Chem-Eur J 24:9703–9713

    Article  CAS  PubMed  Google Scholar 

  14. Jiao L, Xu WQ, Yan HY et al (2019) A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chem Commun 55:9865–9868

    Article  CAS  Google Scholar 

  15. Asati A, Santra S, Kaittanis C et al (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312

    Article  CAS  Google Scholar 

  16. Guo WJ, Zhang M, Lou ZP et al (2019) Engineering nanoceria for enhanced peroxidase mimics: A solid solution strategy. ChemCatChem 11:737–743

    Article  CAS  Google Scholar 

  17. Pirmohamed T, Dowding JM, Singh S et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46:2736–2738

    Article  CAS  Google Scholar 

  18. Janos P, Lovaszova I, Pfeifer J et al (2016) Accelerated dephosphorylation of adenosine phosphates and related compounds in the presence of nanocrystalline cerium oxide. Environ Sci Nano 3:847–856

    Article  CAS  Google Scholar 

  19. Yao TZ, Tian ZM, Zhang YQ et al (2019) Phosphatase-like activity of porous nanorods of CeO2 for the highly stabilized dephosphorylation under interferences. ACS Appl Mater Interfaces 11:195–201

    Article  CAS  PubMed  Google Scholar 

  20. Liu HY, Liu JW (2020) Self-limited phosphatase-mimicking CeO2 nanozymes. ChemNanoMat 6:947–952

    Article  CAS  Google Scholar 

  21. Zhao YL, Li HT, Lopez A et al (2020) Promotion and inhibition of the oxidase-mimicking activity of nanoceria by phosphate, polyphosphate and DNA. ChemBioChem 21:2178–2186

    Article  CAS  PubMed  Google Scholar 

  22. Wang HN, Zhou XF, Yu MH et al (2006) Supra-assembly of siliceous vesicles. J Am Chem Soc 128:15992–15993

    Article  CAS  PubMed  Google Scholar 

  23. Phoka S, Laokul P, Swatsitang E et al (2009) Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater Chem Phys 115:423–428

    Article  CAS  Google Scholar 

  24. Angotzi MS, Mameli V, Cara C et al (2021) Meso- and macroporous silica-based aresenic adsorbents: effect of pore size, nature of the active phase, and silicon release. Nanoscale Adv 3:6100–6113

    Article  Google Scholar 

  25. Zhou CH, Zhang YH, Huang MJ et al (2021) Photoelectrochemical aptasensing for thrombin based on exonuclease III-assisted recycling signal amplification and nanoceria enzymatic strategy. Talanta 233:122577

    Article  CAS  PubMed  Google Scholar 

  26. Guo WC, Bi HY, Qiao L et al (2011) Characterization of efficient proteolysis by trypsin loaded macroporous silica. Mol BioSyst 7:2890–2898

    Article  CAS  PubMed  Google Scholar 

  27. Goellner EM, Putnam CD, Kolodner RD (2015) Exonuclease I-dependent and independent mismatch repair. DNA Repair 32:24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao LH, Han HL, Ma ZF (2018) Improved screen-printed carbon electrode for multiplexed label-free amperometric immuniosensor: addressing its conductivity and reproducibility challenges. Biosens Bioelectron 101:304–310

    Article  CAS  PubMed  Google Scholar 

  29. Zhang DS, Li WX, Ma ZF et al (2019) Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue. Biosens Bioelectron 126:800–805

    Article  CAS  PubMed  Google Scholar 

  30. Liu JB, Liu J, Shang YH et al (2022) An electrochemical immunosensor for simultaneous detection of two lung cancer markers based on electroactive probes. J Electroanal Chem 919:116559

    Article  CAS  Google Scholar 

  31. Buyuktiryaki S, Say R, Denizli A et al (2017) Phosphoserine imprinted nanosensor for detection of Cancer Antigen 125. Talanta 167:172–180

    Article  CAS  PubMed  Google Scholar 

  32. Chen F, Liu Y, Chen C et al (2017) Respective and simultaneous detection tumor markers CA 125 and STIP1 using aptamer-based fluorescent and RLS sensors. Sensor Actuator B Chem 245:470–476

    Article  CAS  Google Scholar 

  33. Johari-Ahar M, Rashidi M, Barar J et al (2015) An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale 7:3768–3779

    Article  CAS  PubMed  Google Scholar 

  34. Nie YT, Yang MY, Ding YL (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185:331

    Article  Google Scholar 

  35. Zhao Y, Zheng Y, Zhao C et al (2015) Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 71:200–206

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), the Jiangsu Provincial Natural Science Foundation for Higher Education Institutions (19KJB150026), and the Postgraduate Research & Practice Innovation Program of Jiangsu Normal University (2021XKT0321, 2022XKT0305) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiuying Tian or Jusheng Lu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 283 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, R., Wu, X., Tian, J. et al. A colorimetric aptasensor for CA125 determination based on dual catalytic performance of CeO2 nanozyme confined in macroporous silica foam. Microchim Acta 190, 470 (2023). https://doi.org/10.1007/s00604-023-06046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06046-w

Keywords

Navigation