Skip to main content

Advertisement

Log in

A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838–838. https://doi.org/10.1126/science.1094559

    Article  CAS  PubMed  Google Scholar 

  2. van Wijnen J, Ragas AMJ, Kroeze C (2019) Modelling global river export of microplastics to the marine environment: sources and future trends. Sci Total Environ 673:392–401. https://doi.org/10.1016/j.scitotenv.2019.04.078

    Article  CAS  PubMed  Google Scholar 

  3. Fadare OO, Okoffo ED (2020) Covid-19 face masks: a potential source of microplastic fibers in the environment. Sci Total Environ 737:140279. https://doi.org/10.1016/j.scitotenv.2020.140279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frias JPGL, Nash R (2019) Microplastics: finding a consensus on the definition. Mar Pollut Bull 138:145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022

    Article  CAS  PubMed  Google Scholar 

  5. Zheng Y, Li J, Cao W et al (2019) Distribution characteristics of microplastics in the seawater and sediment: a case study in Jiaozhou Bay, China. Sci Total Environ 674:27–35. https://doi.org/10.1016/j.scitotenv.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Xu EG, Li J et al (2020) A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol 54:3740–3751. https://doi.org/10.1021/acs.est.9b04535

    Article  CAS  PubMed  Google Scholar 

  7. Shim WJ, Hong SH, Eo S (2018) Chapter 1 - Marine microplastics: abundance, distribution, and composition. In: Zeng EY (ed) Microplastic contamination in aquatic environments. Elsevier, pp 1–26

    Google Scholar 

  8. Ugwu K, Herrera A, Gómez M (2021) Microplastics in marine biota: a review. Mar Pollut Bull 169:112540. https://doi.org/10.1016/j.marpolbul.2021.112540

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  10. Yang L, Zhang Y, Kang S et al (2021) Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Sci Total Environ 780:146546. https://doi.org/10.1016/j.scitotenv.2021.146546

    Article  CAS  PubMed  Google Scholar 

  11. Yu X, Peng J, Wang J et al (2016) Occurrence of microplastics in the beach sand of the Chinese inner sea: the Bohai Sea. Environ Pollut 214:722–730. https://doi.org/10.1016/j.envpol.2016.04.080

    Article  CAS  PubMed  Google Scholar 

  12. Lorenz C, Roscher L, Meyer MS et al (2019) Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ Pollut 252:1719–1729. https://doi.org/10.1016/j.envpol.2019.06.093

    Article  CAS  PubMed  Google Scholar 

  13. Cincinelli A, Martellini T, Guerranti C et al (2019) A potpourri of microplastics in the sea surface and water column of the Mediterranean Sea. TrAC Trends Anal Chem 110:321–326. https://doi.org/10.1016/j.trac.2018.10.026

    Article  CAS  Google Scholar 

  14. Pan Z, Guo H, Chen H et al (2019) Microplastics in the Northwestern Pacific: abundance, distribution, and characteristics. Sci Total Environ 650:1913–1922. https://doi.org/10.1016/j.scitotenv.2018.09.244

    Article  CAS  PubMed  Google Scholar 

  15. Kanhai LDK, Gardfeldt K, Krumpen T et al (2020) Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci Rep 10:5004. https://doi.org/10.1038/s41598-020-61948-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Enders K, Lenz R, Stedmon CA, Nielsen TG (2015) Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull 100:70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  17. Eriksen M, Mason S, Wilson S et al (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Xiong X, Wu C, Elser JJ et al (2019) Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River – from inland to the sea. Sci Total Environ 659:66–73. https://doi.org/10.1016/j.scitotenv.2018.12.313

    Article  CAS  Google Scholar 

  19. Zhao S, Zhu L, Wang T, Li D (2014) Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Mar Pollut Bull 86:562–568. https://doi.org/10.1016/j.marpolbul.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  20. Asensio-Montesinos F, Oliva Ramírez M, González-Leal JM et al (2020) Characterization of plastic beach litter by Raman spectroscopy in South-western Spain. Sci Total Environ 744:140890. https://doi.org/10.1016/j.scitotenv.2020.140890

    Article  CAS  PubMed  Google Scholar 

  21. Aves AR, Revell LE, Gaw S et al (2022) First evidence of microplastics in Antarctic snow. Cryosphere 16:2127–2145. https://doi.org/10.5194/tc-16-2127-2022

    Article  Google Scholar 

  22. Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  23. Borrelle SB, Rochman CM, Liboiron M et al (2017) Why we need an international agreement on marine plastic pollution. Proc Natl Acad Sci 114:9994–9997. https://doi.org/10.1073/pnas.1714450114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hartmann NB, Hüffer T, Thompson RC et al (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 53:1039–1047. https://doi.org/10.1021/acs.est.8b05297

    Article  CAS  PubMed  Google Scholar 

  25. Hollóczki O, Gehrke S (2020) Can nanoplastics alter cell membranes? ChemPhysChem 21:9–12. https://doi.org/10.1002/cphc.201900481

    Article  CAS  PubMed  Google Scholar 

  26. Stock V, Böhmert L, Lisicki E et al (2019) Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93:1817–1833. https://doi.org/10.1007/s00204-019-02478-7

    Article  CAS  PubMed  Google Scholar 

  27. Prüst M, Meijer J, Westerink RHS (2020) The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 17:24. https://doi.org/10.1186/s12989-020-00358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ragusa A, Svelato A, Santacroce C et al (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274. https://doi.org/10.1016/j.envint.2020.106274

    Article  CAS  PubMed  Google Scholar 

  29. Ragusa A, Notarstefano V, Svelato A et al (2022) Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 14:2700. https://doi.org/10.3390/polym14132700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Batel A, Borchert F, Reinwald H et al (2018) Microplastic accumulation patterns and transfer of benzo [a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ Pollut 235:918–930. https://doi.org/10.1016/j.envpol.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y-Y, Liu Y, Xu J, Ni B-J (2022) Three-dimensional excitation-emission matrix (EEM) fluorescence approach to probing the binding interactions of polystyrene microplastics to bisphenol A. J Hazard Mater Adv 5:100046. https://doi.org/10.1016/j.hazadv.2022.100046

    Article  CAS  Google Scholar 

  32. Cao Y, Ma X, Chen N et al (2023) Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. J Hazard Mater 443:130079. https://doi.org/10.1016/j.jhazmat.2022.130079

    Article  CAS  PubMed  Google Scholar 

  33. Mo Q, Yang X, Wang J et al (2021) Adsorption mechanism of two pesticides on polyethylene and polypropylene microplastics: DFT calculations and particle size effects. Environ Pollut 291:118120. https://doi.org/10.1016/j.envpol.2021.118120

    Article  CAS  PubMed  Google Scholar 

  34. Kokilathasan N, Dittrich M (2022) Nanoplastics: detection and impacts in aquatic environments – a review. Sci Total Environ 849:157852. https://doi.org/10.1016/j.scitotenv.2022.157852

    Article  CAS  Google Scholar 

  35. Lusher AL, Bråte ILN, Munno K et al (2020) Is it or isn’t it: the importance of visual classification in microplastic characterization. Appl Spectrosc 74:1139–1153. https://doi.org/10.1177/0003702820930733

    Article  CAS  PubMed  Google Scholar 

  36. Gigault J, Pedrono B, Maxit B, Halle AT (2016) Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano 3:346–350. https://doi.org/10.1039/C6EN00008H

    Article  CAS  Google Scholar 

  37. Lee J, Chae K-J (2021) A systematic protocol of microplastics analysis from their identification to quantification in water environment: a comprehensive review. J Hazard Mater 403:124049. https://doi.org/10.1016/j.jhazmat.2020.124049

    Article  CAS  PubMed  Google Scholar 

  38. Peñalver R, Arroyo-Manzanares N, López-García I, Hernández-Córdoba M (2020) An overview of microplastics characterization by thermal analysis. Chemosphere 242:125170. https://doi.org/10.1016/j.chemosphere.2019.125170

    Article  CAS  PubMed  Google Scholar 

  39. Cole M, Lindeque P, Fileman E et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655. https://doi.org/10.1021/es400663f

    Article  CAS  PubMed  Google Scholar 

  40. Ivleva NP, Wiesheu AC, Niessner R (2017) Microplastic in aquatic ecosystems. Angew Chem Int Ed 56:1720–1739. https://doi.org/10.1002/anie.201606957

    Article  CAS  Google Scholar 

  41. Gardiner DJ, Graves PR (1989) Practical Raman Spectroscopy. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  42. Woo H, Seo K, Choi Y et al (2021) Methods of analyzing microsized plastics in the environment. Appl Sci 11:10640. https://doi.org/10.3390/app112210640

    Article  CAS  Google Scholar 

  43. Isabel Pérez-Jiménez A, Lyu D, Lu Z et al (2020) Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 11:4563–4577. https://doi.org/10.1039/D0SC00809E

    Article  Google Scholar 

  44. Pittroff M, Müller YK, Witzig CS et al (2021) Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy. Environ Sci Pollut Res 28:59439–59451. https://doi.org/10.1007/s11356-021-12467-y

    Article  CAS  Google Scholar 

  45. Ivleva NP (2021) Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev 121:11886–11936. https://doi.org/10.1021/acs.chemrev.1c00178

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Huang S-C, Hu S et al (2020) Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys 2:253–271. https://doi.org/10.1038/s42254-020-0171-y

    Article  Google Scholar 

  47. Qin J, Kim MS, Chao K et al (2019) Advances in Raman spectroscopy and imaging techniques for quality and safety inspection of horticultural products. Postharvest Biol Technol 149:101–117. https://doi.org/10.1016/j.postharvbio.2018.11.004

    Article  Google Scholar 

  48. Lussier F, Thibault V, Charron B et al (2020) Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal Chem 124:115796. https://doi.org/10.1016/j.trac.2019.115796

    Article  CAS  Google Scholar 

  49. Tirkey A, Upadhyay LSB (2021) Microplastics: an overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170:112604. https://doi.org/10.1016/j.marpolbul.2021.112604

    Article  CAS  PubMed  Google Scholar 

  50. Cho S, Kim Y, Chung H (2021) Feasibility study for simple on-line Raman spectroscopic detection of microplastic particles in water using perfluorocarbon as a particle-capturing medium. Anal Chim Acta 1165:338518. https://doi.org/10.1016/j.aca.2021.338518

    Article  CAS  PubMed  Google Scholar 

  51. Sobhani Z, Al Amin M, Naidu R et al (2019) Identification and visualisation of microplastics by Raman mapping. Anal Chim Acta 1077:191–199. https://doi.org/10.1016/j.aca.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  52. Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  53. Levermore JM, Smith TEL, Kelly FJ, Wright SL (2020) Detection of microplastics in ambient particulate matter using raman spectral imaging and chemometric analysis. Anal Chem 92:8732–8740. https://doi.org/10.1021/acs.analchem.9b05445

  54. Liu J, Zhang X, Du Z et al (2020) Application of confocal laser Raman spectroscopy on marine sediment microplastics. J. Oceanol Limnol 38:1502–1516. https://doi.org/10.1007/s00343-020-0129-z

    Article  CAS  Google Scholar 

  55. Prata JC, Da Costa JP, Fernandes AJS et al (2021) Selection of microplastics by Nile Red staining increases environmental sample throughput by micro-Raman spectroscopy. Sci Total Environ 783:146979. https://doi.org/10.1016/j.scitotenv.2021.146979

    Article  CAS  PubMed  Google Scholar 

  56. Guo X, Dai H, Gukowsky J et al (2023) Detection and quantification of microplastics in commercially bottled edible oil. Food Packag Shelf Life 38:101122. https://doi.org/10.1016/j.fpsl.2023.101122

    Article  CAS  Google Scholar 

  57. Ghosal S, Chen M, Wagner J et al (2018) Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – a Raman micro-spectroscopy study. Environ Pollut 233:1113–1124. https://doi.org/10.1016/j.envpol.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  58. Schymanski D, Oßmann BE, Benismail N et al (2021) Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Anal Bioanal Chem 413:5969–5994. https://doi.org/10.1007/s00216-021-03498-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Domogalla-Urbansky J, Anger PM, Ferling H et al (2019) Raman microspectroscopic identification of microplastic particles in freshwater bivalves (Unio pictorum) exposed to sewage treatment plant effluents under different exposure scenarios. Environ Sci Pollut Res 26:2007–2012. https://doi.org/10.1007/s11356-018-3609-3

    Article  Google Scholar 

  60. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  61. Trivedi DJ, Barrow B, Schatz GC (2020) Understanding the chemical contribution to the enhancement mechanism in SERS: connection with Hammett parameters. J Chem Phys 153:124706. https://doi.org/10.1063/5.0023359

    Article  CAS  PubMed  Google Scholar 

  62. Cong S, Liu X, Jiang Y et al (2020) Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation (Camb) 1:100051. https://doi.org/10.1016/j.xinn.2020.100051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Z, Lu J, Wang Z et al (2023) Investigation of high-order resonant modes for aluminium nanoparticles (arrays) using the finite-difference time-domain method. Nanoscale 10.1039.D3NR04226J. https://doi.org/10.1039/D3NR04226J

  64. Li J, Peng W, Wang A et al (2023) Highly sensitive and selective SERS substrates with 3D hot spot buildings for rapid mercury ion detection. Analyst 148:4044–4052. https://doi.org/10.1039/D3AN00827D

    Article  CAS  PubMed  Google Scholar 

  65. Enders K, Lenz R, Ivar Do Sul JA et al (2020) When every particle matters: a QuEChERS approach to extract microplastics from environmental samples. MethodsX 7:100784. https://doi.org/10.1016/j.mex.2020.100784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alula MT, Mengesha ZT, Mwenesongole E (2018) Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: a review. Vib Spectrosc 98:50–63. https://doi.org/10.1016/j.vibspec.2018.06.013

    Article  CAS  Google Scholar 

  67. Neng J, Zhang Q, Sun P (2020) Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens Bioelectron 167:112480. https://doi.org/10.1016/j.bios.2020.112480

    Article  CAS  PubMed  Google Scholar 

  68. Chen H, Park S-G, Choi N et al (2020) SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron 167:112496. https://doi.org/10.1016/j.bios.2020.112496

    Article  CAS  PubMed  Google Scholar 

  69. Rojalin T, Koster HJ, Liu J et al (2020) Hybrid nanoplasmonic porous biomaterial scaffold for liquid biopsy diagnostics using extracellular vesicles. ACS Sens 5:2820–2833. https://doi.org/10.1021/acssensors.0c00953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mariño-Lopez A, Sousa-Castillo A, Blanco-Formoso M et al (2019) Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters. ChemNanoMat 5:46–50. https://doi.org/10.1002/cnma.201800355

    Article  CAS  Google Scholar 

  71. Santhoshkumar S, Murugan E (2021) Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl Surf Sci 553:149544. https://doi.org/10.1016/j.apsusc.2021.149544

    Article  CAS  Google Scholar 

  72. Fan M, Andrade GFS, Brolo AG (2020) A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 1097:1–29. https://doi.org/10.1016/j.aca.2019.11.049

    Article  CAS  PubMed  Google Scholar 

  73. Xu G, Cheng H, Jones R et al (2020) Surface-enhanced raman spectroscopy facilitates the detection of microplastics <1 μm in the Environment. Environ Sci Technol 54:15594–15603. https://doi.org/10.1021/acs.est.0c02317

    Article  CAS  PubMed  Google Scholar 

  74. Brandt J, Mattsson K, Hassellöv M (2021) Deep learning for reconstructing low-quality FTIR and raman spectra─a CASE STUDY IN MICROPLASTIC ANALYSES. Anal Chem 93:16360–16368. https://doi.org/10.1021/acs.analchem.1c02618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mikac L, Rigó I, Himics L et al (2023) Surface-enhanced Raman spectroscopy for the detection of microplastics. Appl Surf Sci 608:155239. https://doi.org/10.1016/j.apsusc.2022.155239

    Article  CAS  Google Scholar 

  76. Chang L, Jiang S, Luo J et al (2022) Nanowell-enaanced Raman spectroscopy enables the visualization and quantification of nanoplastics in the environment. Environ Sci Nano 9:542–553. https://doi.org/10.1039/D1EN00945A

    Article  CAS  Google Scholar 

  77. Lv L, He L, Jiang S et al (2022) In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Nanotechnol Environ Eng 728:138449. https://doi.org/10.1016/j.scitotenv.2020.138449

    Article  CAS  Google Scholar 

  78. Sridhar A, Kannan D, Kapoor A, Prabhakar S (2022) Extraction and detection methods of microplastics in food and marine systems: a critical review. Chemosphere 286:131653. https://doi.org/10.1016/j.chemosphere.2021.131653

    Article  CAS  PubMed  Google Scholar 

  79. Tian M, Morais CLM, Shen H et al (2022) Direct identification and visualisation of real-world contaminating microplastics using Raman spectral mapping with multivariate curve resolution-alternating least squares. J Hazard Mater 422:126892. https://doi.org/10.1016/j.jhazmat.2021.126892

    Article  CAS  PubMed  Google Scholar 

  80. Ma X, Xie J, Wang Z, Zhang Y (2022) Transparent and flexible AuNSs/PDMS-based SERS substrates for in-situ detection of pesticide residues. Spectrochim Acta A Mol Biomol Spectrosc 267:120542. https://doi.org/10.1016/j.saa.2021.120542

    Article  CAS  PubMed  Google Scholar 

  81. Oßmann BE, Sarau G, Holtmannspötter H et al (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316. https://doi.org/10.1016/j.watres.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  82. Liu Y, Jiang W-Y, Liao Y et al (2022) Separation of false-positive microplastics and analysis of microplastics via a two-phase system combined with confocal Raman spectroscopy. J Hazard Mater 440:129803. https://doi.org/10.1016/j.jhazmat.2022.129803

    Article  CAS  PubMed  Google Scholar 

  83. Yin R, Ge H, Chen H et al (2021) Sensitive and rapid detection of trace microplastics concentrated through Au-nanoparticle-decorated sponge on the basis of surface-enhanced Raman spectroscopy. Environ Adv 5:100096. https://doi.org/10.1016/j.envadv.2021.100096

    Article  CAS  Google Scholar 

  84. Vélez-Escamilla LY, Contreras-Torres FF (2022) Latest advances and developments to detection of micro- and nanoplastics using surface-enhanced raman spectroscopy. Part Part Syst Charact 39:2100217. https://doi.org/10.1002/ppsc.202100217

    Article  Google Scholar 

  85. Li D, Xu X, Li Z et al (2020) Detection methods of ammonia nitrogen in water: a review. TrAC Trends Anal Chem 127:115890. https://doi.org/10.1016/j.trac.2020.115890

    Article  CAS  Google Scholar 

  86. Lê QT, Ly NH, Kim M-K et al (2021) Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J Hazard Mater 402:123499. https://doi.org/10.1016/j.jhazmat.2020.123499

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, Xu G, Ruan X et al (2022) V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Front Environ Sci Eng 16:1–10. https://doi.org/10.1007/s11783-022-1578-8

    Article  CAS  Google Scholar 

  88. Wang Q, Wang J, Li M, et al (2021) Size-dependent surface enhanced Raman scattering activity of plasmonic AuNS@AgNCs for rapid and sensitive detection of Butyl benzyl phthalate. Spectrochim Acta Part A: Mol Biomol Spectr 248:119131. https://doi.org/10.1016/j.saa.2020.119131

  89. Zhou X-X, Liu R, Hao L-T, Liu J-F (2021) Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta 221:121552. https://doi.org/10.1016/j.talanta.2020.121552

    Article  CAS  PubMed  Google Scholar 

  90. Kihara S, Chan A, In E et al (2022) Detecting polystyrene nanoplastics using filter paper-based surface-enhanced Raman spectroscopy. RSC Adv 12:20519–20522. https://doi.org/10.1039/D2RA03395J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li G, Yang Z, Pei Z et al (2022) Single-particle analysis of micro/nanoplastics by SEM-Raman technique. Talanta 249:123701. https://doi.org/10.1016/j.talanta.2022.123701

    Article  CAS  PubMed  Google Scholar 

  92. Ly NH, Kim M-K, Lee H et al (2022) Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. J Nanostructure Chem 12:865–888. https://doi.org/10.1007/s40097-022-00506-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A (2021) Detection of sub-micro- and nanoplastic particles on gold nanoparticle-based substrates through surface-enhanced raman scattering (SERS) spectroscopy. Nanomaterials 11:1149. https://doi.org/10.3390/nano11051149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee C-H, Fang JK-H (2022) The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. J Environ Sci 121:58–64. https://doi.org/10.1016/j.jes.2021.08.044

    Article  Google Scholar 

  95. Chaisrikhwun B, Ekgasit S, Pienpinijtham P (2023) Size-independent quantification of nanoplastics in various aqueous media using surfaced-enhanced Raman scattering. J Hazard Mater 442:130046. https://doi.org/10.1016/j.jhazmat.2022.130046

    Article  CAS  PubMed  Google Scholar 

  96. Xu D, Su W, Lu H et al (2022) A gold nanoparticle doped flexible substrate for microplastics SERS detection. Phys Chem Chem Phys 24:12036–12042. https://doi.org/10.1039/D1CP05870C

    Article  CAS  PubMed  Google Scholar 

  97. Qin H, Zhao S, Gong H, et al (2023) Recent progress in the application of metal organic frameworks in surface-enhanced Raman scattering detection. Biosensors 13:479. https://doi.org/10.3390/bios13040479

  98. Dey T (2023) Microplastic pollutant detection by surface enhanced Raman spectroscopy (SERS): a mini-review. Nanotechnol Environ Eng 8:41–48. https://doi.org/10.1007/s41204-022-00223-7

    Article  CAS  Google Scholar 

  99. Li D, Yao D, Li C et al (2020) Nanosol SERS quantitative analytical method: a review. Trends Anal Chem 127:115885. https://doi.org/10.1016/j.trac.2020.115885

    Article  CAS  Google Scholar 

  100. Jung S, Cho S-H, Kim K-H, Kwon EE (2021) Progress in quantitative analysis of microplastics in the environment: a review. Chem Eng J 422:130154. https://doi.org/10.1016/j.cej.2021.130154

    Article  CAS  Google Scholar 

  101. Li C, Wang L, Luo Y et al (2018) A sensitive gold nanoplasmonic SERS quantitative analysis method for sulfate in serum using fullerene as catalyst. Nanomaterials 8:277. https://doi.org/10.3390/nano8050277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu R, Zhang K, Wang W et al (2022) Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water. J Hazard Mater 429:128388. https://doi.org/10.1016/j.jhazmat.2022.128388

    Article  CAS  PubMed  Google Scholar 

  103. López-Castaños KA, Ortiz-Frade LA, Méndez E et al (2020) Indirect quantification of glyphosate by SERS using an incubation process with hemin as the reporter molecule: a contribution to signal amplification mechanism. Front Chem 8:612076. https://doi.org/10.3389/fchem.2020.612076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu M-L, Gao Y, Li Y et al (2018) Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 197:78–82. https://doi.org/10.1016/j.saa.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  105. Kearns H, Shand NC, Smith WE et al (2015) 1064 nm SERS of NIR active hollow gold nanotags. Phys Chem Chem Phys 17:1980–1986. https://doi.org/10.1039/C4CP04281F

    Article  CAS  PubMed  Google Scholar 

  106. Mogha NK, Shin D (2023) Nanoplastic detection with surface enhanced Raman spectroscopy: Present and future. TrAC Trends Anal Chem 158:116885. https://doi.org/10.1016/j.trac.2022.116885

    Article  CAS  Google Scholar 

  107. Luo H, Xiang Y, He D et al (2019) Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci Total Environ 678:1–9. https://doi.org/10.1016/j.scitotenv.2019.04.401

    Article  CAS  PubMed  Google Scholar 

  108. Karakolis EG, Nguyen B, You JB et al (2019) Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environ Sci Technol Lett 6:334–340. https://doi.org/10.1021/acs.estlett.9b00241

    Article  CAS  Google Scholar 

  109. Lee YK, Murphy KR, Hur J (2020) Fluorescence signatures of dissolved organic matter leached from microplastics: polymers and additives. Environ Sci Technol 54:11905–11914. https://doi.org/10.1021/acs.est.0c00942

    Article  CAS  PubMed  Google Scholar 

  110. Xia L, Li G (2021) Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis. J Sep Sci 44:1752–1768. https://doi.org/10.1002/jssc.202001196

    Article  CAS  PubMed  Google Scholar 

  111. Chen J, Li S, Yao F et al (2022) Progress of microfluidics combined with SERS technology in the trace detection of harmful substances. Chemosensors 10:449. https://doi.org/10.3390/chemosensors10110449

    Article  CAS  Google Scholar 

  112. Li X, Zhang D, Wang L et al (2023) Shrinking gap between nanoparticles in gold nanofilms to enhance surface-enhanced Raman spectroscopy performance investigated by both experimental and theoretical methods. Appl Surf Sci 638:157823. https://doi.org/10.1016/j.apsusc.2023.157823

    Article  CAS  Google Scholar 

  113. Yao F, Zhu P, Chen J et al (2023) Synthesis of nanoparticles via microfluidic devices and integrated applications. Microchim Acta 190:256. https://doi.org/10.1007/s00604-023-05838-4

    Article  CAS  Google Scholar 

  114. Qi Y, Hu D, Jiang Y et al (2023) Recent progresses in machine learning assisted raman spectroscopy. Adv Opt Mater:2203104. https://doi.org/10.1002/adom.202203104

  115. Käppler A, Windrich F, Löder MGJ et al (2015) Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem 407:6791–6801. https://doi.org/10.1007/s00216-015-8850-8

    Article  CAS  PubMed  Google Scholar 

  116. He S, Zhang W, Liu L et al (2014) Baseline correction for Raman spectra using an improved asymmetric least squares method. Anal Methods 6:4402–4407. https://doi.org/10.1039/C4AY00068D

    Article  CAS  Google Scholar 

  117. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2:160. https://doi.org/10.1007/s42979-021-00592-x

  118. Xie L, Luo S, Liu Y et al (2023) Automatic identification of individual nanoplastics by raman spectroscopy based on machine learning. Environ Sci Technol acs.est.3c03210. https://doi.org/10.1021/acs.est.3c03210

  119. Chen Z, Khaireddin Y, Swan AK (2022) Identifying the charge density and dielectric environment of graphene using Raman spectroscopy and deep learning. Analyst 147:1824–1832. https://doi.org/10.1039/D2AN00129B

    Article  CAS  PubMed  Google Scholar 

  120. Solís-Fernández P, Ago H (2022) Machine learning determination of the twist angle of bilayer graphene by Raman spectroscopy: implications for van der Waals heterostructures. ACS Appl Nano Mater 5:1356–1366. https://doi.org/10.1021/acsanm.1c03928

    Article  CAS  Google Scholar 

  121. Yao Z, Su H, Yao J, Huang X (2021) Yield-adjusted operation for convolution filter denoising. Anal Chem 93:16489–16503. https://doi.org/10.1021/acs.analchem.1c03606

    Article  CAS  PubMed  Google Scholar 

  122. Yang S, Xie Y, Liu J et al (2022) Raman spectral classification algorithm of cephalosporin based on VGGNeXt. Analyst 147:5486–5494. https://doi.org/10.1039/D2AN01355J

    Article  CAS  PubMed  Google Scholar 

  123. Primpke S, Dias PA, Gerdts G (2019) Automated identification and quantification of microfibres and microplastics. Anal Methods 11:2138–2147. https://doi.org/10.1039/C9AY00126C

    Article  CAS  Google Scholar 

  124. Zabalza J, Ren J, Zheng J et al (2016) Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185:1–10. https://doi.org/10.1016/j.neucom.2015.11.044

    Article  Google Scholar 

  125. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, pp 770–778

  126. Pradhan P, Guo S, Ryabchykov O, et al (2020) Deep learning a boon for biophotonics? J Biophoto 13:e201960186. https://doi.org/10.1002/jbio.201960186

  127. Xie Y, Yang S, Zhou S et al (2023) SE-ResNet-based classifier for highly similar mixtures based on Raman spectrum: classification for alcohol systems as an example. J Raman Spectrosc 54:191–200. https://doi.org/10.1002/jrs.6466

    Article  CAS  Google Scholar 

  128. Zhao XY, Liu GY, Sui YT et al (2021) Denoising method for Raman spectra with low signal-to-noise ratio based on feature extraction. Spectrochim Acta A Mol Biomol Spectrosc 250:119374. https://doi.org/10.1016/j.saa.2020.119374

    Article  CAS  PubMed  Google Scholar 

  129. de Medeiros Back H, Junior EC, Alarcon OE, Pottmaier D (2022) Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy. Chemosphere 287:131903. https://doi.org/10.1016/j.chemosphere.2021.131903

    Article  CAS  Google Scholar 

Download references

Funding

Project supported by the National Key R&D Plan (No. 2022YFF0606702), the National Natural Science Foundation of China (Grant No. 22174133, 12274386, 51832005, 62075203 and 1210042018) and Zhejiang Provincial Natural Science Foundation of China (No. LGF21F050002), and the Preeminence Youth Science Funds of Zhejiang Province (No.LR19F050001), the Key R&D Plan of Zhejiang Province (No.2022C01127 and 2021C05005). Also, the work was greatly supported by the NMPA Key Laboratory for POCT Technology Transforming and Quality Control.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Mingqiang Zou or Pei Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 46 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, J., Yao, F. et al. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Microchim Acta 190, 465 (2023). https://doi.org/10.1007/s00604-023-06044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06044-y

Keywords

Navigation