Skip to main content
Log in

NIR-II fluorescent Ag2Se polystyrene beads in a lateral flow immunoassay to detect biomarkers for breast cancer

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fluorescent lateral flow immunoassay (LFA), one tool in point of care testing (POCT) systems for breast cancer, has attracted attention because it is quick, simple, and convenient. However, samples and the constituent material exhibit autofluorescence in the visible region, which is a very large obstacle in the development of fluorescent LFAs. The autofluorescence of biological samples is scarcely found in the second near-infrared (NIR-II) range and samples scatter and absorb less NIR-II light than visible light. Here, we report an NIR-II QD-LFA platform using the NIR-II fluorescent Ag2Se quantum dots (QDs) with 1020 nm emission encapsulated into polystyrene beads as fluorescent probes. The NIR-II LFA platform was established to detect breast cancer tumour markers (CEA and CA153) within 15 min with a low limit of detection (CEA: 0.768 ng mL−1, CA153: 1.192 U mL−1), high recoveries (93.7% ~ 108.8%), and relative standard deviations (RSDs) of less than 10%. This study demonstrated the potential of NIR-II Ag2Se polystyrene beads as a fluorescent probe in LFA for rapid and accurate identification of biomarkers. They are suited for use in professional situations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS et al (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48. https://doi.org/10.3322/caac.21763

    Article  PubMed  Google Scholar 

  2. Vourtsis A, Berg WA (2019) Breast density implications and supplemental screening. Eur Radiol 29:1762–1777. https://doi.org/10.1007/s00330-018-5668-8

    Article  PubMed  Google Scholar 

  3. Berg WA (2007) Beyond standard mammographic screening: mammography at age extremes, ultrasound, and MR imaging. Radiol Clin North Am 45:895–906. https://doi.org/10.1016/j.rcl.2007.06.001

    Article  PubMed  Google Scholar 

  4. Schünemann HJ, Lerda D, Quinn C et al (2019) Breast cancer screening and diagnosis: A synopsis of the european breast guidelines. Ann Intern Med 172:46–56. https://doi.org/10.7326/M19-2125

    Article  PubMed  Google Scholar 

  5. Chandak A, Nayar P, Lin G (2019) Rural-urban disparities in access to breast cancer screening: A spatial clustering analysis. J Rural Health 35:229–235. https://doi.org/10.1111/jrh.12308

    Article  PubMed  Google Scholar 

  6. Wu L, Qu X (2015) Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 44:2963–2997. https://doi.org/10.1039/C4CS00370E

    Article  CAS  PubMed  Google Scholar 

  7. Zavridou M, Smilkou S, Tserpeli V et al (2022) Development and analytical validation of a 6-Plex reverse transcription droplet digital PCR assay for the absolute quantification of prostate cancer biomarkers in circulating tumor cells of patients with metastatic castration-resistant prostate cancer. Clin Chem 68:1323–1335. https://doi.org/10.1093/clinchem/hvac125

    Article  PubMed  Google Scholar 

  8. Liu J, Cui D, Jiang Y et al (2021) Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int J Biol Macromol 166:884–892. https://doi.org/10.1016/j.ijbiomac.2020.10.245

    Article  CAS  PubMed  Google Scholar 

  9. Li F, Zhang Y, Liu J et al (2018) Luminol, horseradish peroxidase and antibody ternary codified gold nanoparticles for a label-free homogenous chemiluminescent immunoassay. Anal Methods 10:722–729. https://doi.org/10.1039/C7AY02743E

    Article  CAS  Google Scholar 

  10. Huang Y, Xie T, Zou K et al (2021) Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Nanoscale 13:13344–13352. https://doi.org/10.1039/D1NR02418C

    Article  CAS  PubMed  Google Scholar 

  11. Liu H, Cao J, Ding S-N (2022) Simultaneous detection of two ovarian cancer biomarkers in human serums with biotin-enriched dendritic mesoporous silica nanoparticles-labeled multiplex lateral flow immunoassay. Sens Actuators, B Chem 371:132597–132605. https://doi.org/10.1016/j.snb.2022.132597

    Article  CAS  Google Scholar 

  12. Shah KG, Yager P (2017) Wavelengths and lifetimes of paper autofluorescence: A simple substrate screening process to enhance the sensitivity of fluorescence-based assays in paper. Anal Chem 89:12023–12029. https://doi.org/10.1021/acs.analchem.7b02424

    Article  CAS  PubMed  Google Scholar 

  13. Swanson C, D’Andrea A (2013) Lateral flow assay with near-infrared dye for multiplex detection. Clin Chem 59:641–648. https://doi.org/10.1373/clinchem.2012.200360

    Article  CAS  PubMed  Google Scholar 

  14. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diao S, Hong G, Antaris AL et al (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8:3027–3034. https://doi.org/10.1007/s12274-015-0808-9

    Article  CAS  Google Scholar 

  16. Kenry DY, Liu B (2018) Recent advances of optical imaging in the second near-infrared window. Adv Mater 30:1802394. https://doi.org/10.1002/adma.201802394

    Article  CAS  Google Scholar 

  17. Liu Q, Cheng S, Chen R et al (2020) Near-infrared lanthanide-doped nanoparticles for a low interference lateral flow immunoassay test. ACS Appl Mater Interfaces 12:4358–4365. https://doi.org/10.1021/acsami.9b22449

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Ke J, Liu Q et al (2021) NIR-II emitting rare-earth nanoparticles for a lateral flow immunoassay in hemolysis. Sens Actuators, B Chem 345:130380–130389. https://doi.org/10.1016/j.snb.2021.130380

    Article  CAS  Google Scholar 

  19. Song Z, Suo Y, Duan S et al (2023) NIR-II fluorescent nanoprobe-labeled lateral flow biosensing platform: A high-performance point-of-care testing for carcinoembryonic antigen. Biosens Bioelectron 224:115063–115071. https://doi.org/10.1016/j.bios.2023.115063

    Article  CAS  PubMed  Google Scholar 

  20. Zhou F, Li Z, Chen H et al (2020) Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy 73:104757–104774. https://doi.org/10.1016/j.nanoen.2020.104757

    Article  CAS  Google Scholar 

  21. Biswas MC, Islam MT, Nandy PK et al (2021) Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: A review. ACS Materials Letters 3:889–911. https://doi.org/10.1021/acsmaterialslett.0c00550

    Article  CAS  Google Scholar 

  22. Fan Y-L, Liu Z-Y, Zeng Y-M et al (2021) A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta 223:121721–121729. https://doi.org/10.1016/j.talanta.2020.121721

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Yu Z-L, Xu R et al (2023) The second near-infrared window quantum dot-based fluorescence anisotropy probes for separation-free, sensitive and rapid detection of small extracellular vesicle PD-L1 in plasma samples. Sens Actuators, B Chem 376:132962–132971. https://doi.org/10.1016/j.snb.2022.132962

    Article  CAS  Google Scholar 

  24. Banin Hirata BK, Oda JMM, Losi Guembarovski R et al (2014) Molecular markers for breast cancer: Prediction on tumor behavior. Dis Markers 2014:513158–513170. https://doi.org/10.1155/2014/513158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia L, Li G, Ma N et al (2022) Soluble POSTN is a novel biomarker complementing CA153 and CEA for breast cancer diagnosis and metastasis prediction. BMC Cancer 22:760–770. https://doi.org/10.1186/s12885-022-09864-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao X, Zhang Y, Chen H et al (2011) Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal Biochem 414:70–76. https://doi.org/10.1016/j.ab.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Qi M, Cui X et al (2022) The clinical application of combined ultrasound, mammography, and tumor markers in screening breast cancer among high-risk women. Comput Math Methods Med 2022:4074628–4074634. https://doi.org/10.1155/2022/4074628

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi L-J, Zhu C-N, He H et al (2016) Near-infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv 6:38183–38186. https://doi.org/10.1039/C6RA04987G

    Article  CAS  Google Scholar 

  29. Hu R, Liao T, Ren Y et al (2022) Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles. Nano Res 15:7313–7319. https://doi.org/10.1007/s12274-022-4351-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorkhabi TS, Samberan MF, Ostrowski KA et al (2022) Novel synthesis, characterization and amoxicillin release study of pH-sensitive nanosilica/poly(acrylic acid) macroporous hydrogel with high swelling. Materials 15:469–482. https://doi.org/10.3390/ma15020469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (91959103,81801842), Central Government Funds for Local Science and Technology Development (XZ202102YD0033C, XZ202202YD0021C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaowei Zhang or Zhi-Quan Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.65 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, K., Yu, ZL., Hu, X. et al. NIR-II fluorescent Ag2Se polystyrene beads in a lateral flow immunoassay to detect biomarkers for breast cancer. Microchim Acta 190, 462 (2023). https://doi.org/10.1007/s00604-023-06039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06039-9

Keywords

Navigation