Skip to main content
Log in

Iridium oxide and cobalt hydroxide microfluidic-based potentiometric pH sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microliter volume pH determination is of great importance in the biomedical and industrial applications. The current available pH meter and measurement techniques are hard to reach the high demand of microliter volume pH determination in a repeatable, stable, and sensitivity manner. This work aims to fill the gap of microliter volume pH measurements while maintaining good sensing performance. The electrodeposited iridium oxide and cobalt hydroxide along with gold electrode served as working, counter, and reference electrode, respectively, for 10–12 μL volume pH measurements with Nernst constant of 55.9 ± 4.4 mV/pH. The electrodeposited thin film was further characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Raman spectrometry, etc. to confirm its morphology and composition. The constructed pH sensor was used for human serum sample measurements to confirm the suitability of future applications. The results show that it has only 0.80% variation compared to a commercial pH meter with a limit of detection (LOD, or resolution) of ± 0.01 pH. It holds a great potential to be used in the future for microliter volume in situ pH measurements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available upon requests to the corresponding author.

References

  1. Lee KJ, Capon PK, Ebendorff-Heidepriem H, Keenan E, Brownfoot F, Schartner EP (2023) Influence of the photopolymerization matrix on the indicator response of optical fiber pH sensors. Sensors Actuators B Chem 376:132999

    Article  CAS  Google Scholar 

  2. Belotti Y, Jokhun D, Ponnambalam J, Valerio V, Lim C (2021) Machine learning based approach to pH imaging and classification of single cancer cells. APL Bioeng 5:016105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H (2023) Profiling extracellular vesicles in circulation enables the early detection of ovarian cancer. bioRxiv. https://doi.org/10.1101/2023.01.19.524549

  4. Ges IA, Ivanov BL, Schaffer DK, Lima EA, Werdich AA, Baudenbacher FJ (2005) Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens Bioelectron 21:248–256

    Article  CAS  PubMed  Google Scholar 

  5. Moradi V, Akbari M, Wild P (2019) A fluorescence-based pH sensor with microfluidic mixing and fiber optic detection for wide range pH measurements. Sensors Actuators A Phys 297:111507

    Article  CAS  Google Scholar 

  6. Kinoshita K, Madou M (1984) Electrochemical measurements on Pt, Ir, and Ti oxides as pH probes. J Electroche Soc 131:1089

    Article  CAS  Google Scholar 

  7. Madou M, Kinoshita K (1984) Electrochemical measurements on metal oxide electrodes—I. Zirconium dioxide. Electrochim Acta 29:411–417

    Article  CAS  Google Scholar 

  8. Yao S, Wang M, Madou M (2001) A pH electrode based on melt-oxidized iridium oxide. J Electrochem Soc 148:H29

    Article  CAS  Google Scholar 

  9. Lu Y, Wang T, Cai Z, Cao Y, Yang H, Duan YY (2009) Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording. Sensors Actuators B Chem 137:334–339

    Article  Google Scholar 

  10. Lima AC, Jesus AA, Tenan MA, de Souza Silva AF, Oliveira AF (2005) Evaluation of a high sensitivity PbO2 pH-sensor. Talanta 66:225–228

    Article  CAS  PubMed  Google Scholar 

  11. Cheng Y, Xiong P, Yun CS, Strouse G, Zheng J, Yang R, Wang Z (2008) Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. Nano Lett 8:4179–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sensors Actuators 5:137–146

    Article  CAS  Google Scholar 

  13. Katsube T, Lauks I, Zemel J (1981) pH-sensitive sputtered iridium oxide films. Sensors Actuators 2:399–410

    Article  Google Scholar 

  14. Hitchman ML, Ramanathan S (1991) Potentiometric determination of proton activities in solutions containing hydrofluoric acid using thermally oxidized iridium electrodes. Analyst 116:1131–1133

    Article  CAS  Google Scholar 

  15. Hendrikse J, Olthuis W, Bergveld P (1998) A method of reducing oxygen induced drift in iridium oxide pH sensors. Sensors Actuators B Chem 53:97–103

    Article  CAS  Google Scholar 

  16. Kim TY, Yang S (2014) Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sensors Actuators B Chem 196:31–38

    Article  CAS  Google Scholar 

  17. Mani GK, Morohoshi M, Yasoda Y, Yokoyama S, Kimura H, Tsuchiya K (2017) ZnO-based microfluidic pH sensor: a versatile approach for quick recognition of circulating tumor cells in blood. ACS Appl Mater Interfaces 9:5193–5203

    Article  CAS  PubMed  Google Scholar 

  18. Wang M, Yao S, Madou M (2002) A long-term stable iridium oxide pH electrode. Sensors Actuators B Chem 81:313–315

    Article  CAS  Google Scholar 

  19. Mailley S, Hyland M, Mailley P, McLaughlin J, McAdams E (2002) Electrochemical and structural characterizations of electrodeposited iridium oxide thin-film electrodes applied to neurostimulating electrical signal. Mater Sci Eng C 21:167–175

    Article  Google Scholar 

  20. Yoshino T, Baba N, Arai K (1987) Electrochromic IrOx thin films formed in sulfatoiridate (III, IV) complex solution by periodic reverse current electrolysis (PRIROF). Jpn J Appl Phys 26:1547

    Article  CAS  Google Scholar 

  21. Yamanaka K (1989) Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn J Appl Phys 28:632

    Article  CAS  Google Scholar 

  22. Marzouk SA (2003) Improved electrodeposited iridium oxide pH sensor fabricated on etched titanium substrates. Anal Chem 75:1258–1266

    Article  CAS  PubMed  Google Scholar 

  23. Adeel M, Canzonieri V, Daniele S, Rizzolio F, Rahman MM (2021) Organobase assisted synthesis of Co (OH) 2 nanosheets enriched with oxygen vacancies for nonenzymatic glucose sensing at physiological pH. J Ind Eng Chem 103:165–174

    Article  CAS  Google Scholar 

  24. Marzouk SA, Ufer S, Buck RP, Johnson TA, Dunlap LA, Cascio WE (1998) Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. Anal Chem 70:5054–5061

    Article  CAS  PubMed  Google Scholar 

  25. Chandra D, Sato T, Takeuchi R, Li D, Togashi T, Kurihara M, Saito K, Yui T, Yagi M (2017) Polymer surfactant-assisted tunable nanostructures of amorphous IrOx thin films for efficient electrocatalytic water oxidation. Catal Today 290:51–58

    Article  CAS  Google Scholar 

  26. Khalil M, Wang S, Yu J, Lee RL, Liu N (2016) Electrodeposition of iridium oxide nanoparticles for pH sensing electrodes. J Electrochem Soc 163:B485

    Article  CAS  Google Scholar 

  27. McNally E, Zhitomirsky I, Wilkinson D (2005) Cathodic electrodeposition of cobalt oxide films using polyelectrolytes. Mater Chem Phys 91:391–398

    Article  CAS  Google Scholar 

  28. Serventi A, El Khakani M, Saint-Jacques R, Rickerby D (2001) Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy. J Mater Res 16:2336–2342

    Article  CAS  Google Scholar 

  29. Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114:111–119

    Article  CAS  Google Scholar 

  30. Hüfner S, Wertheim G (1975) Core-line asymmetries in the x-ray-photoemission spectra of metals. Phys Rev B 11:678

    Article  Google Scholar 

  31. Kim K, Sell C, Winograd N, Breiter M (1974) In: Breiter MW (ed) Electrochemical Society Softbound Proceedings Series

    Google Scholar 

  32. Wagner C, Riggs W, Davis L, Moulder J, Muilenberg G (1979) Handbook of X-ray photoelectron spectroscopy, vol 38. Perkin-Elmer Corp, Eden Prairie, MN

    Google Scholar 

  33. Fuggle JC, Mårtensson N (1980) Core-level binding energies in metals. J Electron Spectrosc Relat Phenom 21:275–281

    Article  CAS  Google Scholar 

  34. Smith E, Dent G (2019) Modern Raman spectroscopy: a practical approach. John Wiley & Sons

    Book  Google Scholar 

  35. Dong Q, Song D, Huang Y, Xu Z, Chapman JH, Willis WS, Li B, Lei Y (2018) High-temperature annealing enabled iridium oxide nanofibers for both non-enzymatic glucose and solid-state pH sensing. Electrochim Acta 281:117–126

    Article  CAS  Google Scholar 

  36. Pavlovic Z, Ranjan C, van Gastel M, Schlögl R (2017) The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem Commun 53:12414–12417

    Article  CAS  Google Scholar 

  37. Gao Y, Li H, Yang G (2016) Amorphous Co (OH) 2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. J Appl Phys 119:034902

    Article  Google Scholar 

  38. Zhang F, Yuan C, Lu X, Zhang L, Che Q, Zhang X (2012) Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J Power Sources 203:250–256

    Article  CAS  Google Scholar 

  39. Burke LD, Mulcahy JK, Whelan DP (1984) Preparation of an oxidized iridium electrode and the variation of its potential with pH. J Electroanal Chem Interfacial Electrochem 163:117–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help and discussion regarding the XPS analysis with Dr. Graham Dawson in the Department of Chemistry at Xi’an Jiaotong-Liverpool University.

Funding

This research was supported by Research & Development Fund (Project Number: RDF-21-1-005) under Xi’an Jiaotong-Liverpool University.

Author information

Authors and Affiliations

Authors

Contributions

QD designed the initial scheme of the experiments and fabricated the microelectrodes in clean room. WX designed the selectivity tests and human serum pH tests. WX carried out the SEM, XRD, Raman spectrometry, and analyzed the data of TEM, SAED, and metal mapping as well as pH sensing measurements. WX wrote the draft of the manuscript, and QD revised it. QD was responsible for the funding acquisition and supervision.

Corresponding author

Correspondence to Qiuchen Dong.

Ethics declarations

Conflict of interest

The work related to the microfluidic-based electrodeposition, microfabrication processes, and its solid-state pH sensor has been filed with a patent (Patent applicant: Qiuchen Dong, Weiyu Xiao) supported by the Research Development Fund (Project Number: RDF-21-1-005) of Xi’an Jiaotong Liverpool University in the People’s Republic of China with the application number of 202310526544.0, which is pending for approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4.25 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Dong, Q. Iridium oxide and cobalt hydroxide microfluidic-based potentiometric pH sensor. Microchim Acta 190, 457 (2023). https://doi.org/10.1007/s00604-023-06035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06035-z

Keywords

Navigation