Skip to main content
Log in

Simultaneous detection of As(III/V), Cr(III/VI), and Fe(II/III) by a sensor array based on the morphology regulation of CeO2 oxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

To develop a convenient method for simultaneous detection of As(III/V), Cr(III/VI), and Fe(II/III), three morphologies of CeO2 oxidase have been prepared. Based on the difference in oxidase activity and binding ability with substrate TMB of CeOof different morphologies, a 3 (Signal unit) × 6 (Target number) × 5 (Repetition) sensor array was constructed to realize simultaneous detection of six variable valence metal ions As(III/V), Cr(III/VI), and Fe(II/III). The lowest detection limit of the array for metal ions was 1.68 µg/L. The analysis of environmental samples with multiple metal ions (binary and ternary mixtures) co-existing has confirmed that the sensor array can achieve simultaneous qualitative and quantitative results for composite samples. This study not only revealed the influencing factors of crystal morphology regulation on oxidase activity, but also provided a scheme for the morphology detection of easily convertible metal ions in the field through the construction of the sensor array.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available on request from the corresponding author.

References

  1. Djema M, Mebrouk N (2022) Groundwater quality and nitrate pollution in the Nador plain, Algeria. Environ Earth Sci 81(18). https://doi.org/10.1007/s12665-022-10557-9

  2. Chen RH, Liu LM, Li Y, Zhai YZ, Chen HY, Hu B, Zhang QR, Teng YG (2022) Characteristics of hydro-geochemistry and groundwater pollution in Songnen Plain in northeastern China. Sustainability 14(11):6527. https://doi.org/10.3390/su14116527

    Article  CAS  Google Scholar 

  3. Samanta G, Clifford DA (2005) Preservation of inorganic arsenic species in groundwater. Environ Sci Technol 39:8877–8882. https://doi.org/10.1021/es051185i

    Article  CAS  PubMed  Google Scholar 

  4. Lin CH, Chen Y, Su YA, Luo YT, Shih TT, Sun YC (2017) Nanocomposite-coated microfluidic-based photocatalyst-assisted reduction device to couple high-performance liquid chromatography and inductively coupled plasma-mass spectrometry for online determination of inorganic arsenic species in natural water. Anal Chem 89:5892–5900. https://doi.org/10.1021/acs.analchem.7b00247

    Article  CAS  Google Scholar 

  5. Sengupta MK, Dasgupta PK (2009) An automated hydride generation interface to ICPMS for measuring total arsenic in environmental samples. Anal Chem 81:9737–9743. https://doi.org/10.1021/ac9020243

    Article  CAS  PubMed  Google Scholar 

  6. Pathan S, Jalal M, Prasad S, Bose S (2019) Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As(iii) sensing. J Mater Chem A 7:8510–8520. https://doi.org/10.1039/C8TA11358K

    Article  CAS  Google Scholar 

  7. Li PH, Yang M, Li YX, Song ZY, Liu JH, Lin CH, Zeng J, Huang XJ (2020) Ultra-Sensitive and Selective Detection of Arsenic(III) via Electroanalysis over Cobalt Single-Atom Catalysts. Anal Chem 92:6128–6135. https://doi.org/10.1021/acs.analchem.0c00677

    Article  CAS  PubMed  Google Scholar 

  8. Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G, Ryba NJP, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202. https://doi.org/10.1038/nature726

    Article  CAS  PubMed  Google Scholar 

  9. Barnea G, O’Donnell S, Mancia F, Sun X, Nemes A, Mendelsohn M, Axel R (2004) Odorant receptors on axon termini in the brain. Science 304:1468–1468. https://doi.org/10.1126/science.1096146

    Article  CAS  PubMed  Google Scholar 

  10. Persaud K, Dodd G (1982) Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose. Nature 299:352–355. https://doi.org/10.1038/299352a0

    Article  CAS  PubMed  Google Scholar 

  11. Guo YM, Zhang LF, Zhang SS, Yang Y, Chen XH, Zhang MC (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71. https://doi.org/10.1016/j.bios.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  12. Niu LY, Li H, Feng L, Guan YS, Chen YZ, Duan CF, Wu LZ, Guan YF, Tung CH, Yang QZ (2013) BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions. Anal Chim Acta 775:93–99. https://doi.org/10.1016/j.aca.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Xu C, Lu YX, Chen X, Yuan HT, Wei GY, Ye G, Chen J (2017) Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensor Actuat B-Chem 241:1324–1330. https://doi.org/10.1016/j.snb.2016.09.186

    Article  CAS  Google Scholar 

  14. Che HC, Yan SL, Xiong M, Nie YL, Tian XK, Li Y (2023) Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array. J Hazard Mater 443:130182. https://doi.org/10.1016/j.jhazmat.2022.130182

    Article  CAS  PubMed  Google Scholar 

  15. Che HC, Nie YL, Tian XK, Li Y (2023) New method for morphological identification and simultaneous quantification of multiple tetracyclines by a white fluorescent probe. J Hazard Mater 441:129956. https://doi.org/10.1016/j.jhazmat.2022.129956

    Article  CAS  PubMed  Google Scholar 

  16. Qileng A, Chen SZ, Liang HZ, Shen HR, Chen MT, Liu WP, Liu YJ (2023) Bionic structural design of Pt nanozymes with the nano-confined effect for the precise recognition of copper ion. Chem Eng J 455. https://doi.org/10.1016/j.cej.2022.140769

  17. Liu WD, Chu L, Zhang CH, Ni PJ, Jiang YY, Wang B, Lu YZ, Chen CX (2021) Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem Eng J 415. https://doi.org/10.1016/j.cej.2021.128876

  18. Che HC, Tian XK, Guo F, Nie YL, Dai C, Li Y, Lu LQ (2023) Enhancement of the peroxidase activity of g-C3N4 with different morphologies for simultaneous detection of multiple antibiotics. Anal Chem 95:12550–12556. https://doi.org/10.1021/acs.analchem.3c02911

    Article  CAS  PubMed  Google Scholar 

  19. Jin XY, Yin WQ, Ni G, Peng J (2018) Hydrogen-bonding-induced colorimetric detection of melamine based on the peroxidase activity of gelatin-coated cerium oxide nanospheres. Anal Methods-Uk 10:841–847. https://doi.org/10.1039/c7ay02296d

    Article  CAS  Google Scholar 

  20. Jampaiah D, Reddy TS, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE, Shukla R, Bhargava SK (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4:3874–3885. https://doi.org/10.1039/C6TB00422A

    Article  CAS  PubMed  Google Scholar 

  21. Wang SP, Wang FF, Fu CP, Sun YN, Zhao JG, Li N, Liu YQ, Ge SG, Yu JH (2020) AgInSe2-sensitized ZnO nanoflower wide-spectrum response photoelectrochemical/visual sensing platform via Au@Nanorod-anchored CeO2 octahedron regulated signal. Anal Chem 92:7604–7611. https://doi.org/10.1021/acs.analchem.0c00231

    Article  CAS  PubMed  Google Scholar 

  22. Liu JJ, Jia JJ, Wen HY, Li SQ, Wu YJ, Wang Q, Kan ZW, Li Y, Wu X, Zhao JX, Liu S, Li B (2023) Axial optimization of biomimetic nanoenzyme catalysts applied to oxygen reduction reactions. Chem Commun 59:3550–3553. https://doi.org/10.1039/D2CC06197J

    Article  CAS  Google Scholar 

  23. Chen LF, Tian XK, Li Y, Lu LQ, Nie YL, Wang YX (2021) Broad-spectrum pesticide screening by multiple cholinesterases and thiocholine sensors assembled high-throughput optical array system. J Hazard Mater 402. https://doi.org/10.1016/j.jhazmat.2020.123830

  24. Chen LF, Li L, Wu D, Tian XK, Xia DS, Lu LQ, Yang C, Nie YL (2020) Construction of multi-channel fluorescence sensor array and its application for accurate identification and sensitive quantification of multiple metal ions. Sensor Actuat B-Chem 303. https://doi.org/10.1016/j.snb.2019.127277

  25. Tian YY, Che HC, Wang JH, Wang D, Yang LZ, Wang LY, Nie YL, Tian XK (2021) Smartphone as a simple device for visual and on-site detection of fluoride in groundwater. J Hazard Mater 411:125182. https://doi.org/10.1016/j.jhazmat.2021.125182

    Article  CAS  PubMed  Google Scholar 

  26. Che HC, Li Y, Zhang SY, Chen W, Tian XK, Yang C, Lu LQ, Zhou ZX, Nie YL (2020) A portable logic detector based on Eu-MOF for multi-target, on-site, visual detection of Eu3+ and fluoride in groundwater. Sensors Actuators B-Chem 324:128641. https://doi.org/10.1016/j.snb.2020.128641

    Article  CAS  Google Scholar 

  27. Yuan P, Annabi-Bergaya F, Tao Q, Fan MD, Liu ZW, Zhu JX, He HP, Chen TH (2008) A combined study by XRD, MR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. J Colloid Interf Sci 324:142–149. https://doi.org/10.1016/j.jcis.2008.04.076

    Article  CAS  Google Scholar 

  28. Sienkiewicz-Gromiuk J, Rusinek I, Kurach L, Rzaczynska Z (2016) Thermal and spectroscopic (IR, XPS) properties of lanthanide (III) benzene-1,3,5-triacetate complexes. J Therm Anal Calorim 126:327–342. https://doi.org/10.1007/s10973-016-5521-8

    Article  CAS  Google Scholar 

  29. Che HC, Li Y, Tian XK, Yang C, Lu LQ, Nie YL (2021) A versatile logic detector and fluorescent film based on Eu-based MOF for swift detection of formaldehyde in solutions and gas phase. J Hazard Mater 410:124624. https://doi.org/10.1016/j.jhazmat.2020.124624

    Article  CAS  PubMed  Google Scholar 

  30. Che HC, Yan SL, Nie YL, Tian XK, Li Y (2022) Film-based fluorescent sensor for visual monitoring and efficient removal of aniline in solutions and gas phase. J Hazard Mater 435:129016. https://doi.org/10.1016/j.jhazmat.2022.129016

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Teng BT, Wen XD, Zhao Y, Chen QP, Zhao LH, Luo MF (2012) Superoxide and peroxide species on CeO2(111), and their oxidation roles. J Phys Chem C 116:15986–15991. https://doi.org/10.1021/jp3016326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFC3703700), National Natural Science Foundation of China (No. 42107085), the “Fundamental Research Funds for the Central Universities”, the Postdoctoral Science Foundation of China (No. 2021M703006) and Postdoctoral Innovation Research Foundation of Hubei Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 542 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, H., Li, N., Nie, Y. et al. Simultaneous detection of As(III/V), Cr(III/VI), and Fe(II/III) by a sensor array based on the morphology regulation of CeO2 oxidase. Microchim Acta 190, 456 (2023). https://doi.org/10.1007/s00604-023-06027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06027-z

Keywords

Navigation