Skip to main content
Log in

A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ochratoxin A detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ultrasensitive and specific ochratoxin A detection in food samples is presented. Au@SiO2@Fe3O4 nanomaterials provide the loading platform as well as separation and recovery properties for the ternary Y-DNA walker. The ternary Y-DNA walker is designed to be driven by Nb.BbvCI cleaving a large number of FAM probes to achieve signal amplification. Since Ochratoxin A (OTA) can bind to the constituent aptamer in the ternary Y-DNA walker, adding OTA will destroy the structure of the ternary Y-DNA walker, thereby inhibiting the driving process of the walker. After optimization of various parameters, a standard curve was obtained from 100 to 0.05 ng·mL−1 of OTA with the limit of determination of 0.027 ng·mL−1. The spiked recovery of peanut samples by this method was 82.00–93.30%, and the aptasensor showed excellent specificity and long-term stability. This simple, robust, and scalable oligonucleotide chain-based ternary Y-DNA walker can provide a general signal amplification strategy for trace analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

OTA:

Ochratoxin A

CONTAM:

Contaminants in the Food Chain

BMDL10 :

Benchmark dose limit

ssDNA:

Single-stranded DNA

Au@SiO2@Fe3O4 :

Iron oxide and silica core–shell loaded gold nanoparticles composites

FAM:

Carboxyfluorescein

Apt:

Aptamer

ZEN:

Zearalenone

DON:

Deoxynivalenol

AFB1 :

Aflatoxin B1

FB1 :

Fumonisin B1

PAA:

Poly (acrylic acid)

Tris-base:

Tris(hydroxymethyl)aminomethane

TEOS:

Tetraethyl orthosilicate

TCEP:

Tris(hydroxymethyl) aminomethane phosphine hydrochloride solution

PEI:

Polyethylenimine

TEM:

Transmission electron microscope

SEM:

Scanning electron microscopy

XRD:

X-ray diffractometer

RSD:

Relative standard deviations

References

  1. Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, Simal-Gandara J, Xiao J, Ali S, Huh YS, Han YK, Shukla S (2022) Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit Rev Food Sci Nutr:1–22. https://doi.org/10.1080/10408398.2022.2059650

  2. Shotwell OL, Hesseltine CW, Goulden ML (1969) Ochratoxin A: occurrence as natural contaminant of a corn sample. Appl Microbiol 17(5):765–766. https://doi.org/10.1128/am.17.5.765-766.1969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. IARC (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans No 56, which met in Lyon, 9–16 June 1992. International Agency for Research on Cancer, Lyon (FR). http://monographs.iarc.fr/ENG/Monographs/vol56/mono56.pdf

  4. Al-Dhahebi AM, Jose R, Mustapha M, Saheed MSM (2022) Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chem 390:133105. https://doi.org/10.1016/j.foodchem.2022.133105

    Article  CAS  PubMed  Google Scholar 

  5. Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Leblanc JC, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall’Asta C, Mally A, Metzler M, Binaglia M, Horvath Z, Steinkellner H, Bignami M, Chain EPCF (2020) Risk assessment of ochratoxin A in food. EFSA J 18(5):6113. https://doi.org/10.2903/j.efsa.2020.6113

    Article  CAS  Google Scholar 

  6. Kochman J, Jakubczyk K, Janda K (2021) Mycotoxins in red wine: Occurrence and risk assessment. Food Control 129:108229. https://doi.org/10.1016/j.foodcont.2021.108229

    Article  CAS  Google Scholar 

  7. Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F (2023) Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr:1–43. https://doi.org/10.1080/10408398.2023.2168248

  8. Mirsadoughi E, Pebdeni AB, Hosseini M (2023) Sensitive colorimetric aptasensor based on peroxidase-like activity of ZrPr-MOF to detect Salmonella Typhimurium in water and milk. Food Control 146:109500. https://doi.org/10.1016/j.foodcont.2022.109500

    Article  CAS  Google Scholar 

  9. Hong C, Wang J, Wang Y, Huang Z, Yang H, Yang D, Cai R, Tan W (2022) Fluorescence detection of milk allergen beta-lactoglobulin based on aptamers and WS(2) nanosheets. J Mater Chem B 10(35):6752–6757. https://doi.org/10.1039/d2tb00263a

    Article  CAS  PubMed  Google Scholar 

  10. Steinmetzger C, Bauerlein C, Hobartner C (2020) Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers. Angew Chem Int Ed Engl 59(17):6760–6764. https://doi.org/10.1002/anie.201916707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Huang K, Chen X, Li C, Song Q, Li H, Zhu L, Yang Y, Ren A (2021) Structure-based investigation of fluorogenic Pepper aptamer. Nat Chem Biol 17(12):1289–1295. https://doi.org/10.1038/s41589-021-00884-6

    Article  CAS  PubMed  Google Scholar 

  12. Khosropour H, Kalambate PK, Kalambate RP, Permpoka K, Zhou X, Chen GY, Laiwattanapaisal W (2022) A comprehensive review on electrochemical and optical aptasensors for organophosphorus pesticides. Mikrochim Acta 189(9):362. https://doi.org/10.1007/s00604-022-05399-y

    Article  CAS  PubMed  Google Scholar 

  13. Dong X, Qi S, Qin M, Sun Y, Lv Y, Zhang Y, Wang Z (2023) A novel biomimetic network amplification strategy designed fluorescent aptasensor based on yolk-shell Fe(3)O(4) nanomaterials for aflatoxin B1 detection. Food Chem 398:133761. https://doi.org/10.1016/j.foodchem.2022.133761

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y, Zhao J, Liang L (2021) Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 188(1):21. https://doi.org/10.1007/s00604-020-04671-3

    Article  CAS  PubMed  Google Scholar 

  15. Mahani M, Faghihi-Fard M, Divsar F, Torkzadeh-Mahani M, Khakbaz F (2022) Ultrasensitive FRET-based aptasensor for interleukin-6 as a biomarker for COVID-19 progression using nitrogen-doped carbon quantum dots and gold nanoparticles. Mikrochim Acta 189(12):472. https://doi.org/10.1007/s00604-022-05570-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shi X, Zhu X, Chai Y, Zhou Y, Yuan R (2023) Non-enzymatic electrochemiluminescence biosensor for ultrasensitive detection of ochratoxin A based on efficient DNA walker. Food Chem 407:135113. https://doi.org/10.1016/j.foodchem.2022.135113

    Article  CAS  PubMed  Google Scholar 

  17. Qiao X, Ma X, Ma X, Yue T, Sheng Q (2021) A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets. Sensors Actuators B: Chem 334. https://doi.org/10.1016/j.snb.2021.129682

  18. Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z (2023) Fluorescent sensor based on magnetic separation and strand displacement amplification for the sensitive detection of Ochratoxin A. ACS Omega 8(17):15741–15750. https://doi.org/10.1021/acsomega.3c01408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wang Y, Song W, Zhao H, Ma X, Yang S, Qiao X, Sheng Q, Yue T (2021) DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A. Biosens Bioelectron 182:113171. https://doi.org/10.1016/j.bios.2021.113171

    Article  CAS  PubMed  Google Scholar 

  20. Chandrasekaran AR, Anderson N, Kizer M, Halvorsen K, Wang X (2016) Beyond the fold: Emerging biological applications of DNA origami. ChemBioChem 17(12):1081–1089. https://doi.org/10.1002/cbic.201600038

    Article  CAS  PubMed  Google Scholar 

  21. Sundaresan SM, Fothergill SM, Tabish TA, Ryan M, Xie F (2021) Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. Appl Phys Rev 8(4):041311. https://doi.org/10.1063/5.0065833

    Article  CAS  Google Scholar 

  22. Qi S, Dong X, Sun Y, Zhang Y, Duan N, Wang Z (2022) Split aptamer remodeling-initiated target-self-service 3D-DNA walker for ultrasensitive detection of 17beta-estradiol. J Hazard Mater 439:129590. https://doi.org/10.1016/j.jhazmat.2022.129590

    Article  CAS  PubMed  Google Scholar 

  23. Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K (2018) Novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles, and exonuclease-assisted recycling amplification. ACS Appl Mater Interfaces 10(15):12504–12509. https://doi.org/10.1021/acsami.8b02349

    Article  CAS  PubMed  Google Scholar 

  24. Ji Y, Zhang L, Zhu L, Lei J, Wu J, Ju H (2017) Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein. Biosens Bioelectron 96:201–205. https://doi.org/10.1016/j.bios.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  25. Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J (2022) Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 1–17. https://doi.org/10.1080/10408347.2022.2115287

  26. Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E (2022) Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe(3)O(4)@polydopamine nanocomposites. J Nanobiotechnology 20(1):94. https://doi.org/10.1186/s12951-022-01289-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang C, Qian J, Wang K, Hua M, Liu Q, Hao N, You T, Huang X (2015) Nitrogen-Doped Graphene Quantum Dots@SiO2 nanoparticles as electrochemiluminescence and fluorescence signal indicators for magnetically controlled aptasensor with dual detection channels. ACS Appl Mater Interfaces 7(48):26865–26873. https://doi.org/10.1021/acsami.5b09300

    Article  CAS  PubMed  Google Scholar 

  28. Alterary SS, AlKhamees A (2021) Synthesis, surface modification, and characterization of Fe3O4@SiO2 core@shell nanostructure. Green Processing Synthesis 10(1):384–391. https://doi.org/10.1515/gps-2021-0031

    Article  CAS  Google Scholar 

  29. Rakhtshah J (2022) A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles. Coord Chem Rev 467:214614. https://doi.org/10.1016/j.ccr.2022.214614

    Article  CAS  Google Scholar 

  30. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin a with a DNA aptamer. J Agric Food Chem 56(22):10456–10461. https://doi.org/10.1021/jf801957h

    Article  CAS  PubMed  Google Scholar 

  31. Xu G, Zhao J, Liu N, Yang M, Zhao Q, Li C, Liu M (2019) Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Res 47(11):5963–5972. https://doi.org/10.1093/nar/gkz336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Song ZW, Zhu JM, Jiang LY (2014) Novel polysiloxaneimide/polyetherimide/non-woven fabric composite membranes for organophilic pervaporation. J Membr Sci 472:77–90. https://doi.org/10.1016/j.memsci.2014.08.040

    Article  CAS  Google Scholar 

  33. Manshad S, Isloor AM, Nawawi MGM, Inamuddin KI, Marwani HM (2020) Pervaporation dehydration of bio-fuel (n-butanol) by dry thermal treatment membrane. Mater Res Express 7(6):065001. https://doi.org/10.1088/2053-1591/ab9562

    Article  CAS  Google Scholar 

  34. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Scientists 2(1):21. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  35. Yu Y, Li G (2022) Design of terbium (III)-functionalized covalent organic framework as a selective and sensitive turn-on fluorescent switch for ochratoxin A monitoring. J Hazard Mater 422:126927. https://doi.org/10.1016/j.jhazmat.2021.126927

    Article  CAS  PubMed  Google Scholar 

  36. Ranganathan V, Boisjoli S, DeRosa MC (2022) Adsorption-desorption nano-aptasensors: fluorescent screening assays for ochratoxin A. Rsc Adv 12(22):13727–13739. https://doi.org/10.1039/d2ra00026a

    Article  CAS  PubMed  Google Scholar 

  37. Bi X, Luo L, Li L, Liu X, Chen B, You T (2020) A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 218:121159. https://doi.org/10.1016/j.talanta.2020.121159

    Article  CAS  PubMed  Google Scholar 

  38. Wu K, Ma C, Zhao H, Chen M, Deng Z (2019) Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chem 277:273–278. https://doi.org/10.1016/j.foodchem.2018.10.130

    Article  CAS  PubMed  Google Scholar 

  39. Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB (2022) A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles. J Food Compos Anal 114:104806. https://doi.org/10.1016/j.jfca.2022.104806

    Article  CAS  Google Scholar 

  40. Commission E (2012) Commission Regulation (EU) No. 594/2012 amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off J Eur Union 43:43–45

    Google Scholar 

Download references

Acknowledgements

This work has been supported by National Key Research and Development Program of China (2021YFE0101800); National Natural Science Fund of China (NSFC 31871881), Jiangsu Planned Projects for Postdoctoral Research Funds (1601087B), Young Elite Scientists Sponsorship Program by CAST (2017QNRC001) and the National First-class Discipline Program of Food Science and Technology (JUFSTR20180303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Qi, S., Qin, M. et al. A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ochratoxin A detection. Microchim Acta 190, 443 (2023). https://doi.org/10.1007/s00604-023-06018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06018-0

Keywords

Navigation