Skip to main content
Log in

Competitive substitution in europium metal–organic gel for signal-on electrochemiluminescence detection of dipicolinic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal–organic gels (MOGs) emerged as an attractive luminescent soft material for electrochemiluminescence (ECL). In this work, a cathodic ECL-activated europium metal–organic gel (Eu-MOG) has been synthesized by a facile mixing of Eu3+ with 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (Hcptpy) under mild conditions. The prepared Eu-MOG is highly mesoporous for co-reactant permeation to produce an ultra-stable and high-efficient ECL, based on the antenna effect of Eu3+ coordinating with Hcptpy. Moreover, dipicolinic acid (DPA) can competitively coordinate with Eu3+ instead of water molecules, producing an enhanced ECL signal. Therefore, an ECL enhancement assay was developed for DPA detection. There was a linear relationship between the ECL intensity and the logarithmic concentration of DPA in the 0.01–1 μM range, and the detection limit is 7.35 nM. This work displays the promising application of Eu-MOG in the ECL field, opening a broad inspection for seeking a new generation of ECL luminophores.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data supporting this study are available within the paper. The raw data files are available from the corresponding author upon reasonable request.

References

  1. Han ZG, Yang ZF, Sun HS, Xu YL, Ma XF (2019) Electrochemiluminescence platforms based on small water-insoluble organic molecules for ultrasensitive aqueous-phase detection. Angew Chem 58:5915–5919

    Article  CAS  Google Scholar 

  2. Tokel NE, Bard AJ (1972) Electrogenerated chemiluminescence IX electrochemistry and emission from systems containing tris(2,2’-bipyridine) ruthenium(II) dichloride. J Am Chem Soc 94:2862–2863

    Article  CAS  Google Scholar 

  3. Mayer M, Takegami S, Neumeier M, Rink S (2018) Electrochemiluminescence bioassays with a water-soluble luminol derivative can outperform fluorescence assays. Angew Chem 57:408–411

    Article  CAS  Google Scholar 

  4. Peng HP, Huang ZN, Sheng YL, Zhang XP, Deng HH (2019) Pre-oxidation of gold nanoclusters results in a 66% anodic electrochemiluminescence yield and drives mechanistic insights. Angew Chem 58:11691–11694

    Article  CAS  Google Scholar 

  5. Jin ZC, Zhu XR, Wang NN, Li YF, Lei JP (2020) Electroactive metal-organic frameworks as emitters for self-enhanced electrochemiluminescence in aqueous medium. Angew Chem 59:10446–10450

    Article  CAS  Google Scholar 

  6. Jie G, Liu B, Pan H, Zhu JJ, Chen HY (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79:5574–5581

    Article  CAS  PubMed  Google Scholar 

  7. Terech P, Gebel G, Ramasseul R (1996) Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: neutron and x-ray scattering characterizations. Langmuir 12:4321–4323

    Article  CAS  Google Scholar 

  8. Sengupta S, Mondal R (2016) A novel low molecular weight supergelator showing an excellent gas adsorption dye adsorption self-sustaining and chemosensing properties in the gel state. RSC Adv 6:14009–14015

    Article  CAS  Google Scholar 

  9. Barman S, Garg JA, Blacque O, Venkatesan K, Berke H (2012) Triptycene based luminescent metal-organic gels for chemosensing. Chem Commun 48:11127–11129

    Article  CAS  Google Scholar 

  10. Liu YR, He LS, Zhang JY, Wang XB, Su CY (2009) Evolution of spherical assemblies to fibrous networked Pd(II) metallogels from a pyridine-based tripodal ligand and their catalytic property. Chem Mater 21:557–563

    Article  CAS  Google Scholar 

  11. Sebastian A, Mahato MK, Prasad E (2019) A mixed ligand approach towards lanthanide-based gels using citric acid as assembler ligand white light emission and environmental sensing. Soft Matter 15:3407–3417

    Article  CAS  PubMed  Google Scholar 

  12. Tam AYY, Yam VWW (2013) Recent advances in metallogels. Chem Soc Rev 42:1540–1567

    Article  CAS  PubMed  Google Scholar 

  13. Sun YY, Dramou P, Song ZR, Zheng LM, Zhang XN (2022) Lanthanide metal doped organic gel as ratiometric fluorescence probe for selective monitoring of ciprofloxacin. Microchem J 179:107476

    Article  CAS  Google Scholar 

  14. Weng GS, Thanneeru S, He J (2018) Fluorochromic hydrogels dynamic coordination of Eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv Mater 30:1706526

    Article  Google Scholar 

  15. Zhang YJ, Wang TL, Guo HQ, Gao X, Yan Y (2023) An ion-coordination hydrogel based sensor array for point-of-care identification and removal of multiple tetracyclines. Biosens Bioelectron 231:115266

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Jiang ZW, Xiao SY, Huang CZ, Li YF (2018) Terbium(III) organic gels novel antenna effect-induced enhanced electrochemiluminescence emitters. Anal Chem 90:12191–12197

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Han Q, Liu PK, Zhang G, Fu YZ (2021) A superstable luminescent lanthanide metal organic gel utilized in an electrochemiluminescence sensor for epinephrine detection with a narrow potential sweep range. ACS Sens 6:252–258

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Nie YX, Zhang Q, Liang ZH, Ma Q (2021) Polydopamine nanoparticles@MoS2 nanosheet aerogel-based ECL sensing system for MiRNA-126 detection. Chem Eng J 411:128428

    Article  CAS  Google Scholar 

  19. Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Rev 114:4496–4539

    Article  CAS  PubMed  Google Scholar 

  20. Kielar F, Montgomery CP, New EJ, Parker D, Poole RA (2007) A mechanistic study of the dynamic quenching of the excited state of europium(III) and terbium(III) macrocyclic complexes by charge or electron transfer. Biomol Chem 5:2975

    Article  CAS  Google Scholar 

  21. Wu M, Jiang ZW, Zhang P, Gong X, Wang Y (2023) Energy transfer-based ratiometric fluorescence sensing anthrax biomarkers in bimetallic lanthanide metal-organic frameworks. Sens Actuators B 383:133596

    Article  CAS  Google Scholar 

  22. Leng XL, Shi DL, Yang XP, Zhang Z, Li H (2022) Construction of a luminescent square-like Cd6Eu2 nanocluster for the quantitative detection of 2,6-dipicolinic acid as an anthrax biomarker. J Mater Chem C 10:3510–3516

    Article  CAS  Google Scholar 

  23. Cheng ZH, Liu X, Zhang SQ, Yang T, Wang JH (2019) A placeholder strategy with upconversion nanoparticles-eriochrome black T conjugate for rapid colorimetric assay of anthrax biomarker. Anal Chem 91:12094–12099

    Article  CAS  PubMed  Google Scholar 

  24. Rong MC, Deng XZ, Chi ST, Huang LZ, Zhou YB (2018) Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using Europium(III)-doped carbon dots in a test stripe. Microchim Acta 185:201

    Article  Google Scholar 

  25. Zhang XY, Young MA, Lyandres O, Duyne RPV (2005) rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489

    Article  CAS  PubMed  Google Scholar 

  26. Tan C, Wang Q, Zhang CC (2011) Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium. Chem Commun 47:12521–12523

    Article  CAS  Google Scholar 

  27. Wang X, Wang Y, Wang XY, Hu CY, Wu XJ (2022) Dual-ligand two-dimensional europium-organic gels nanosheets for ratiometric fluorescence detecting anthrax spore biomarker. Chem Eng J 435:134912

    Article  CAS  Google Scholar 

  28. Yuan M, Jin Y, Yu L, Bu YM, Sun MT (2023) Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Food Chem 398:133884

    Article  CAS  PubMed  Google Scholar 

  29. Kirby AF, Foster D, Richardson FS (1983) Comparison of 7FJ5D0 emission spectra for Eu(III) crystallne environments of octahedral, near-octahedral and trigonal symmetry. Chem Phys Lett 95:6

    Article  Google Scholar 

  30. Zhang XX, Zhang WJ, Li G, Xin ZW, Liu YX (2019) Preparation of a novel graphene oxide/rare-earth complexes hybrid material and its luminescent film. Opt Mater 98:109425

    Article  CAS  Google Scholar 

  31. Li H, Li YJ, Zhang Z, Pang XL, Yu XD (2019) Highly selective luminescent sensing of Cu2+ in aqueous solution based on a Eu(III)-centered periodic mesoporous organosilicas hybrid. Mater Des 172:107712

    Article  CAS  Google Scholar 

  32. Han L, Dong XZ, Liu SG, Wang XH, Ling Y (2023) A multi-ratiometric fluorescence sensor integrated intrinsic signal amplification strategy for a sensitive and visual assay of the anthrax biomarker based on a bimetallic lanthanide metal-organic framework. Environ Sci Nano 10:683–693

    Article  CAS  Google Scholar 

  33. Shi W, Zhang SQ, Wang Y, Xue YD, Chen ML (2022) Preparation of dual-ligands Eu-MOF nanorods with dual fluorescence emissions for highly sensitive and selective ratiometric/visual fluorescence sensing phosphate. Sens Actuators B 367:132008

    Article  CAS  Google Scholar 

  34. Wu QR, Wang JJ, Hu HM, Fu F, Xue GL (2011) A series of lanthanide coordination polymers with 4′-(4-carboxyphenyl)-2,2′:6′,2″-terpyridine: syntheses, crystal structures and luminescence properties. Inorg Chem Commun 14:484–488

    Article  CAS  Google Scholar 

  35. Liu ZX, Sun YH, Feng Y, Chen H, Fan QH (2016) Halogen-bonding for visual chloride ion sensing: a case study using supramolecular poly(aryl ether) dendritic organogel systems. Chem Commun 52:2269–2272

    Article  CAS  Google Scholar 

  36. Huo PP, Li ZJ, Yao RH, Fan CB, Pu SZ (2022) Dual-ligand lanthanide metal-organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. Spectrochim Acta A 282:121700

    Article  CAS  Google Scholar 

  37. Yilmaz MD, Oktem HA (2018) Eriochrome black T-Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal Chem 90:4221–4225

    Article  CAS  PubMed  Google Scholar 

  38. Qu SM, Song NZ, Xu GX, Jia Q (2021) A ratiometric fluorescent probe for sensitive detection of anthrax biomarker based on terbium-covalent organic polymer systems. Sens Actuators B 290:9–14

    Article  Google Scholar 

  39. Ikeno S, Meakawa T, Hara N (2022) Multi-functional silver nanoparticles for high-throughput endospore sensing. Biosensors 12:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (22004054), Natural Science Foundation of Fujian Province (2020J05163, 2021J01991), and Principal Fund of Minnan Normal University (KJ18014, L21946, KJ2023002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiang Yang or Jiancong Ni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Yang, W., Huang, S. et al. Competitive substitution in europium metal–organic gel for signal-on electrochemiluminescence detection of dipicolinic acid. Microchim Acta 190, 426 (2023). https://doi.org/10.1007/s00604-023-06007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06007-3

Keywords

Navigation