Skip to main content
Log in

A signal-off photoelectrochemical sandwich-type immunosensor based on WO3/TiO2 Z-scheme heterojunction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich “signal-off” type photoelectrochemical (PEC) immunosensor was fabricated based on a composite heterojunction of tungsten oxide/titanium oxide microspheres (WO3/TiO2) acting as signal amplification platform and carbon microspheres loaded by gold nanoparticles (Cs@Au NPs) utilized as the label for detecting antibody. WO3/TiO2 had excellent photoelectric performance, and the results of Mott-Schottky plots, open-circuit voltage, and electron spin resonance spectroscopy indicated that it belonged to the Z-scheme heterojunction transfer mechanism of photogenerated carriers. To achieve the sensitization of PEC immunosensor, Cs@Au NP–labeled immunocomplex can effectively reduce the photocurrent signal. The PEC immunosensors were fabricated under the optimal conditions of 1:1 WO3/TiO2 (molar ratio), 2.0 mg mL−1 WO3/TiO2, and 1.5 mg mL−1 Cs@Au NPs. Through comparison of the detection results of label-free and sandwich-type PEC immunosensors for nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we found that the sensitivity of the sandwich type was 2.53 times the label-free type, and the limit of detection was 0.006 ng mL−1, i.e., 3.17 times lower than the label-free type. This demonstrates that the developed sandwich-type PEC immunosensor will have a brighter application prospect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article and its Supplementary Information.

References

  1. Meng SY, Liu D, Li YY, Dong N, Liu SD, Liu C, Li X, You TY (2023) Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. J Hazard Mater 441:10. https://doi.org/10.1016/j.jhazmat.2022.129759

    Article  CAS  Google Scholar 

  2. Wang HY, Lu QJ, Luo JH, Zeng XW, Zhao CX, Du FY, Zhang YY, Zeng GS, Zhang SY (2023) Photoelectrochemical determination of cardiac troponin I based on rod-like g-C3N5@MnO2 heterostructure. Microchim Acta 190:10. https://doi.org/10.1007/s00604-022-05547-4

    Article  CAS  Google Scholar 

  3. Ma XG, Wang C, Wu FX, Guan YR, Xu GB (2020) TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing. Top Curr Chem 378:17. https://doi.org/10.1007/s41061-020-0291-y

    Article  CAS  Google Scholar 

  4. Ma XH, Kang JS, Wu YW, Pang CH, Li SH, Li JP, Xiong YH, Luo JH, Wang MY, Xu Z (2022) Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac-Trends Anal Chem 157:23. https://doi.org/10.1016/j.trac.2022.116793

    Article  CAS  Google Scholar 

  5. Shu J, Tang DP (2020) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92:363–377. https://doi.org/10.1021/acs.analchem.9b04199

    Article  CAS  PubMed  Google Scholar 

  6. Bai XY, Gao WK, Zhou CH, Zhao DY, Zhang Y, Jia NQ (2022) Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole. Microchim Acta 189:9. https://doi.org/10.1007/s00604-022-05206-8

    Article  CAS  Google Scholar 

  7. Wan WR, Zhang QL, Wei Y, Cao YZ, Hou JX, Liu CY, Hong L, Gao H, Chen JZ, Jing HW (2023) p-n heterojunctions of Si@WO3 mimicking thylakoid for photoelectrocatalytic CO2 reduction to C2+ products-Morphology control. Chem Eng J 454:10. https://doi.org/10.1016/j.cej.2022.140122

    Article  CAS  Google Scholar 

  8. Silva CCG, Torquato LDD, de Araujo BC, Mantilla HDR, Zanoni MVB, Garrido SS (2022) Assessment of WO3 electrode modified with intact chloroplasts as a novel biohybrid platform for photocurrent improvement. Bioelectrochemistry 147:10. https://doi.org/10.1016/j.bioelechem.2022.108177

    Article  CAS  Google Scholar 

  9. Wang K, Li SS, Wang JL, He ZH, Wang D, Zhang RR, Wang WT, Yang Y, Liu ZT (2023) Photothermal oxidation of cyclohexane over CoLaOx/WO3 Z-scheme composites with p-n heterojunction in solvent-free conditions. Catal Today 409:42–52. https://doi.org/10.1016/j.cattod.2022.04.010

    Article  CAS  Google Scholar 

  10. Ding W, Ansari N, Yang YH, Bachagha K (2021) Superiorly sensitive and selective H-2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism. Int J Hydrog Energy 46:28823–28837. https://doi.org/10.1016/j.ijhydene.2021.06.070

    Article  CAS  Google Scholar 

  11. Angela S, Bervia Lunardi V, Kusuma K, Edi Soetaredjo F, Nyoo Putro J, Permatasari Santoso S, Elisa Angkawijaya A, Lie J, Gunarto C, Kurniawan A, Ismadji S, (2021), Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet. Environ Nanotechnol, Monit Manag 16. https://doi.org/10.1016/j.enmm.2021.100598

  12. Park J, Kim B, Han DS, Lim J, Park H (2022) Catalytic activity of photocharged binary TiO2 and WO3 membrane filters: Effect of Al2O3 interlayer on direct vs. mediated electron transfer. Chem Eng J 437:9. https://doi.org/10.1016/j.cej.2022.135319

    Article  CAS  Google Scholar 

  13. Bairamis F, Rapti I, Konstantinou I, (2023), g-C3N4 based Z-scheme photocatalysts for environmental pollutants removal. Curr Opinion Green Sustain Chem 40. https://doi.org/10.1016/j.cogsc.2022.100749

  14. Basumatary B, Basumatary R, Ramchiary A, Konwar D (2022) Evaluation of Ag@TiO2/WO3 heterojunction photocatalyst for enhanced photocatalytic activity towards methylene blue degradation. Chemosphere 286:9. https://doi.org/10.1016/j.chemosphere.2021.131848

    Article  CAS  Google Scholar 

  15. Li H, Wu CH, Liu YC, Yuan SH, Chiang ZX, Zhang S, Wu RJ (2021) Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens Actuator B-Chem 341:8. https://doi.org/10.1016/j.snb.2021.130035

    Article  CAS  Google Scholar 

  16. Lin S, Ren H, Wu Z, Sun L, Zhang XG, Lin YM, Zhang KHL, Lin CJ, Tian ZQ, Li JF (2021) Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting. J Energy Chem 59:721–729. https://doi.org/10.1016/j.jechem.2020.12.010

    Article  CAS  Google Scholar 

  17. Zhang Y, Liu DL, Xiong BY, Li JL, Li YT, Zhou YL, Yang AS, Zhang QP (2022) Constructing WO3/TiO2 heterojunction with solvothermal-sintering for enhanced photocatalytic activity under visible light irradiation. Solid State Sci 131:9. https://doi.org/10.1016/j.solidstatesciences.2022.106963

    Article  CAS  Google Scholar 

  18. Tahir M, Siraj M, Tahir B, Umer M, Alias H, Othman N (2020) Au-NPs embedded Z-scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H-2 evolution. Appl Surf Sci 503:12. https://doi.org/10.1016/j.apsusc.2019.144344

    Article  CAS  Google Scholar 

  19. Meng SG, Sun WT, Zhang SJ, Zheng XZ, Fu XL, Chen SF (2018) Insight into the transfer mechanism of photogenerated carriers for WO3/TiO2 heterojunction photocatalysts: is it the transfer of band-band or Z-scheme? Why? J Phys Chem C 122:26326–26336. https://doi.org/10.1021/acs.jpcc.8b07524

    Article  CAS  Google Scholar 

  20. Guan XX, Deng XX, Song J, Wang XY, Wu S (2021) Polydopamine with Tailorable photoelectrochemical activities for the highly sensitive immunoassay of tumor markers. Anal Chem 93:6763–6769. https://doi.org/10.1021/acs.analchem.1c00504

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Gan Y, Li FH, Qiu Y, Pan YX, Wan H, Wang P (2022) An immunocolorimetric sensing system for highly sensitive and high-throughput detection of BNP with carbon-gold nanocomposites amplification. Biosensors-Basel 12:15. https://doi.org/10.3390/bios12080619

    Article  CAS  Google Scholar 

  22. Peng Y, He X, Zheng NC, Hu RT, Guo WQ, Hu ZF (2021) Transferring waste of biomass and heavy metal into photocatalysts for hydrogen peroxide activation. Chem Eng J 420:11. https://doi.org/10.1016/j.cej.2021.129867

    Article  CAS  Google Scholar 

  23. Wu ZG, Tang SW, Deng WJ, Luo JW, Wang XY (2021) Antibacterial chitosan composite films with food-inspired carbon spheres immobilized AgNPs. Food Chem 363:11. https://doi.org/10.1016/j.foodchem.2021.130342

    Article  CAS  Google Scholar 

  24. Feng WX, Xiang YR, Wu LP, Chen Z, Li QF, Chen J, Guo YR, Xia DD, Chen N, Zhang LF, Zhu SL, Zhao KN (2022) Nucleocapsid protein of SARS-CoV-2 is a potential target for developing new generation of vaccine. J Clin Lab Anal 36:10. https://doi.org/10.1002/jcla.24479

    Article  CAS  Google Scholar 

  25. Eissa S, Alhadrami HA, Al-Mozaini M, Hassan AM, Zourob M (2021) Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Microchim Acta 188:10. https://doi.org/10.1007/s00604-021-04867-1

    Article  CAS  Google Scholar 

  26. Sherwood LJ, Hayhurst A (2021) Toolkit for quickly generating and characterizing molecular probes specific for SARS-CoV-2 nucleocapsid as a primer for future coronavirus pandemic preparedness, ACS Synth. Biol 10:379–390. https://doi.org/10.1021/acssynbio.0c00566

    Article  CAS  Google Scholar 

  27. Lyu AH, Jin TC, Wang SS, Huang XX, Zeng WH, Yang R, Cui H (2021) Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads. Sens Actuator B-Chem 349:8. https://doi.org/10.1016/j.snb.2021.130739

    Article  CAS  Google Scholar 

  28. Pei FB, Feng SS, Zhang YH, Wu Y, Chen CL, Sun Y, Xie ZH, Hao QL, Cao Y, Tong ZY, Lei W (2022) A photoelectrochemical immunosensor based on Z-scheme CdS composite heterojunction for aflatoxin B1. Biosens Bioelectron 214:8. https://doi.org/10.1016/j.bios.2022.114500

    Article  CAS  Google Scholar 

  29. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem-Int Edit 43:597–601. https://doi.org/10.1002/anie.200352386

    Article  CAS  Google Scholar 

  30. Yao XX, Hu XL, Zhang WJ, Gong XY, Wang XH, Pillai SC, Dionysiou DD, Wang DW (2020) Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Appl Catal B-Environ 276:10. https://doi.org/10.1016/j.apcatb.2020.119153

    Article  CAS  Google Scholar 

  31. Zhou HR, Wen ZP, Liu J, Ke J, Duan XG, Wang SB (2019) Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. Appl Catal B-Environ 242:76–84. https://doi.org/10.1016/j.apcatb.2018.09.090

    Article  CAS  Google Scholar 

  32. Khan H, Rigamonti MG, Patience GS, Boffito DC (2018) Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl Catal B-Environ 226:311–323. https://doi.org/10.1016/j.apcatb.2017.12.049

    Article  CAS  Google Scholar 

  33. Cui BB, Guo CP, Zhang ZH, Fu GD (2023) Construction of a novel self-bleaching photochromic hydrogel embraced within the Zn-MOF@WO3 junction for assembling UV-irradiated smart rewritable device. Chem Eng J 455:12. https://doi.org/10.1016/j.cej.2022.140822

    Article  CAS  Google Scholar 

  34. Li HD, Li WJ, Gu SN, Wang FZ, Liu XT, Ren CJ (2017) Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visible-light photocatalytic activity. Mol Catal 433:301–312. https://doi.org/10.1016/j.mcat.2017.02.042

    Article  CAS  Google Scholar 

  35. Chen ZM, Wang JG, Zhai GJ, An W, Men Y (2017) Hierarchical yolk-shell WO3 microspheres with highly enhanced photoactivity for selective alcohol oxidations. Appl Catal B-Environ 218:825–832. https://doi.org/10.1016/j.apcatb.2017.07.027

    Article  CAS  Google Scholar 

  36. Algadi H, Ren JN, Alqarni A (2023) Solution-processed nitrogen-doped graphene quantum dots/perovskite composite heterojunction for boosting performance of anatase titanium dioxide (TiO2)-based UV photodetector. Adv Compos Hybrid Mater 6:15. https://doi.org/10.1007/s42114-023-00667-8

    Article  CAS  Google Scholar 

  37. Drisya KT, Solis-Lopez M, Rios-Ramirez JJ, Duran-Alvarez JC, Rousseau A, Velumani S, Asomoza R, Kassiba A, Jantrania A, Castaneda H (2020) Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes. Sci Rep 10:16. https://doi.org/10.1038/s41598-020-69032-9

    Article  CAS  Google Scholar 

  38. Dashtian K, Hajati S, Ghaedi M (2021) Ti-based solid-state imprinted-Cu2O/CuInSe2 heterojunction photoelectrochemical platform for highly selective dopamine monitoring. Sens Actuator B-Chem 326:10. https://doi.org/10.1016/j.snb.2020.128824

    Article  CAS  Google Scholar 

  39. He F, Meng AY, Cheng B, Ho WK, Yu JG (2020) Enhanced photocatalytic H-2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal 41:9–20. https://doi.org/10.1016/s1872-2067(19)63382-6

    Article  CAS  Google Scholar 

  40. Zhang BH, Wang H, Xi JJ, Zhao FQ, Zeng BZ (2020) Novel Bi2+xWO6 p-n homojunction nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical immunosensor. ACS Sens 5:2876–2884. https://doi.org/10.1021/acssensors.0c01044

    Article  CAS  PubMed  Google Scholar 

  41. Dashtian K, Ghaedi M, Hajati S (2019) Photo-Sensitive Pb5S2I6 crystal incorporated polydopamine biointerface coated on nanoporous TiO2 as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr(VI) ions. Biosens Bioelectron 132:105–114. https://doi.org/10.1016/j.bios.2019.02.042

    Article  CAS  PubMed  Google Scholar 

  42. Sekizawa K, Oh-ishi K, Kataoka K, Arai T, Suzuki TM, Morikawa T (2017) Stoichiometric water splitting using a p-type Fe2O3 based photocathode with the aid of a multiheterojunction. J Mater Chem A 5:6483–6493. https://doi.org/10.1039/c7ta00431a

    Article  CAS  Google Scholar 

  43. Jing LQ, Xu YG, Liu J, Zhou MJ, Xu H, Xie M, Li HM, Xie JM (2020) Direct Z-scheme red carbon nitride/rod-like lanthanum vanadate composites with enhanced photodegradation of antibiotic contaminants. Appl Catal B-Environ 277:15. https://doi.org/10.1016/j.apcatb.2020.119245

    Article  CAS  Google Scholar 

  44. Chen TY, Wang YF, Zhang SY, Gao Z, Zhao DJ, Wu J, Shen K, Sun B (2022) Cathodic photoelectrochemical sensor developed for glutathione detection based on carrier transport in a Ti3C2Tx/AgI heterojunction. Anal Chim Acta 1233:11. https://doi.org/10.1016/j.aca.2022.340487

    Article  CAS  Google Scholar 

  45. Guo AJ, Pei FB, Feng SS, Hu W, Zhang PJ, Xia MZ, Mu XH, Tong ZY, Wang FY, Liu B (2023) A photoelectrochemical immunosensor based on magnetic all-solid-state Z-scheme heterojunction for SARS-CoV-2 nucleocapsid protein detection. Sens Actuator B-Chem 374:8. https://doi.org/10.1016/j.snb.2022.132800

    Article  CAS  Google Scholar 

  46. Sun Y, Xie ZH, Pei FB, Hu W, Feng SS, Hao QL, Liu B, Mu XH, Lei W, Tong ZY (2022) Trimetallic Au@Pd@Pt nanozyme-enhanced lateral flow immunoassay for the detection of SARS-CoV-2 nucleocapsid protein. Anal Methods 14:5091–5099. https://doi.org/10.1039/d2ay01530g

    Article  CAS  PubMed  Google Scholar 

  47. Liang CL, Liu BC, Li JF, Lu JH, Zhang EH, Deng QT, Zhang L, Chen R, Fu YS, Li CY, Li TT (2021) A nanoenzyme linked immunochromatographic sensor for rapid and quantitative detection of SARS-CoV-2 nucleocapsid protein in human blood. Sens Actuator B-Chem 349:9. https://doi.org/10.1016/j.snb.2021.130718

    Article  CAS  Google Scholar 

  48. Bistaffa MJ, Camacho SA, Pazin WM, Constantino CJL, Oliveira ON, Aoki PHB (2022) Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta 244:9. https://doi.org/10.1016/j.talanta.2022.123381

    Article  CAS  Google Scholar 

  49. Guo JC, Chen SQ, Tian SL, Liu K, Ni J, Zhao M, Kang YJ, Ma X, Guo JH (2021) 5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosens Bioelectron 181:8. https://doi.org/10.1016/j.bios.2021.113160

    Article  CAS  Google Scholar 

  50. Tian JJ, Liang ZX, Hu O, He QD, Sun DP, Chen ZG (2021) An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim Acta 387:8. https://doi.org/10.1016/j.electacta.2021.138553

    Article  CAS  Google Scholar 

  51. Jiang ZW, Zhao TT, Li CM, Li YF, Huang CZ (2021) 2D MOF-based photoelectrochemical aptasensor for SARS-CoV-2 spike glycoprotein detection. ACS Appl Mater Interfaces 13:49754–49761. https://doi.org/10.1021/acsami.1c17574

    Article  CAS  PubMed  Google Scholar 

  52. Li HL, Zhao JL, Wu T, Fu Z, Zhang W, Lian Z, Cai SF, Yang R (2023) Dual ligand-induced photoelectrochemical sensing by integrating Pt/MoS2 heterostructure and Au polyhedra for sensitive detection of SARS-CoV-2. Sens Actuator B-Chem 376:9. https://doi.org/10.1016/j.snb.2022.132970

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the State Key Laboratory of NBC Protection for Civilian (SKLNBC2022-06) and the National Natural Science Foundation of China (No. 51972173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Lei or Zhaoyang Tong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 592 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, F., Feng, S., Hu, W. et al. A signal-off photoelectrochemical sandwich-type immunosensor based on WO3/TiO2 Z-scheme heterojunction. Microchim Acta 190, 384 (2023). https://doi.org/10.1007/s00604-023-05954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05954-1

Keywords

Navigation