Skip to main content
Log in

A dual-targeting nanobiosensor for Gender Determination applying Signal Amplification Methods and integrating Fluorometric Gold and Silver Nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-targeting nanobiosensor has been developed for the simultaneous detection of AMELX and AMELY genes based on the different fluorescence signals emitted from gold and silver nanoclusters, AuNCs and AgNCs respectively. In our design, both catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) have been used as isothermal, enzyme-free and simple methods for signal’s amplification. The working principle is based on the initiation of a cascade of CHA-HCR reactions when AMELX is present, in which AuNCs, synthesized on the third hairpin, are aggregated on the surface of the dsDNA product, performing the phenomenon of aggregation induced emission (AIE) and enhancing their fluorescence signal. On the other hand, the presence of the second target, AMELY, is responsible for the enhancement of the fluorescence signal corresponding to AgNCs by the same phenomenon, via hybridizing to the free end of the dsDNA formed and at the same time to the probe of silver nanoclusters fixing it closer to the surface of the dsDNA product. Such a unique design has the merits of being simple, inexpensive, specific and stable and presents rapid results. The detection limits of this assay for AMELX and AMELY are as low as 3.16 fM and 23.6 fM respectively. Moreover, this platform showed great performance in real samples. The design has great promise for the application of dual-targeting nanobiosensors to other biomarkers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Clark LC Jr, Lyons C (1968) Electrode systems for continuous monitoring in cardiovascular surgery. Ann New York Acad Sci 102(1):29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  Google Scholar 

  2. Chen X, Yao C, Li Z (2023) Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. TrAC Trends in Analytical Chem 158:116785

    Article  CAS  Google Scholar 

  3. Hassan RYA (2022) Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors 22(19):7539. https://doi.org/10.3390/s22197539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang S, Zhao K, Yu D-G, Zheng X, Huang C (2022) Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv Fiber Mater 4(3):404–435

    Article  CAS  Google Scholar 

  5. Bazzi F, Ebrahimi-Hoseinzadeh B, Sangachin EA, Hosseini M (2023) The integration of hybridization chain reaction (HCR) with fluorogenic silver nanoclusters (AgNCs) in an aggregation induced emission (AIE)-based nanosensor for sex determination and its forensic application. Microchemical Journal 185:108188

    Article  CAS  Google Scholar 

  6. Saiki RK et al (1985) Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,". Science 230(4732):1350–1354

    Article  CAS  PubMed  Google Scholar 

  7. Banér J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22):5073–5078

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA Detection Using Recombination Proteins. PLoS Biol 4(7):e204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Nat Acad Sci 101(43):15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322

    Article  CAS  PubMed  Google Scholar 

  11. Chen P et al (2019) Multimode MicroRNA Sensing via Multiple Enzyme-Free Signal Amplification and Cation-Exchange Reaction. ACS Appl Mater Interfaces 11(40):36476–36484

    Article  CAS  PubMed  Google Scholar 

  12. Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44(23):8636–8663. https://doi.org/10.1039/C5CS00607D

    Article  CAS  PubMed  Google Scholar 

  13. Huang H, Li H, Feng J-J, Wang A-J (2016) One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+,. Sensors and Actuators B: Chemical 223:550–556

    Article  CAS  Google Scholar 

  14. Li H, Chen J, Huang H, Feng J-J, Wang A-J, Shao L-X (2016) Green and facile synthesis of l-carnosine protected fluorescent gold nanoclusters for cellular imaging. Sensors and Actuators B: Chemical 223:40–44

    Article  CAS  Google Scholar 

  15. Hosseini M, Ahmadi E, Borghei Y-S, Reza Ganjali M (2017) A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods App Fluoresc 5(1):015005

    Article  Google Scholar 

  16. Nakahori Y, Takenaka O, Nakagome Y (1991) A human X-Y homologous region encodes “amelogenin.” Genomics 9(2):264–269

    Article  CAS  PubMed  Google Scholar 

  17. Wang C et al (2015) Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs. Nanoscale 7(38):15822–15829. https://doi.org/10.1039/C5NR04618A

    Article  CAS  PubMed  Google Scholar 

  18. Ma Q et al (2023) Target controlled alternative hybridization chain reaction for fluorescent detection of dual mycotoxins. Analytica Chimica Acta 1237:340595

    Article  CAS  PubMed  Google Scholar 

  19. Fu P, Xing S, Xu M, Zhao Y, Zhao C (2020) Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sensors and Actuators B: Chemical 305:127545

    Article  CAS  Google Scholar 

  20. Xue Y, Wang Y, Feng S, Yan M, Huang J, Yang X (2022) A dual-amplification mode and Cu-based metal-organic frameworks mediated electrochemical biosensor for sensitive detection of microRNA. Biosensors and Bioelectronics 202:113992

    Article  CAS  PubMed  Google Scholar 

  21. Li T et al (2018) One-Step Synthesis of DNA Templated Water-Soluble Au–Ag Bimetallic Nanoclusters for Ratiometric Fluorescence Detection of DNA. J Biomed Nanotechnol 14(1):150–160

    Article  PubMed  Google Scholar 

  22. Fan C, Li Q (2019) Advances in DNA Nanotechnology. Small 15(26):1902586. https://doi.org/10.1002/smll.201902586

    Article  CAS  Google Scholar 

  23. Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA−Silver Nanocluster Probe That Fluoresces upon Hybridization. Nano Letters 10(8):3106–3110

    Article  CAS  PubMed  Google Scholar 

  24. Wang H-B, Bai H-Y, Dong G-L, Liu Y-M (2019) DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. Nanoscale Advances 1(4):1482–1488. https://doi.org/10.1039/C8NA00278A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang J, Lin X, Shu T, Su L, Liang F, Zhang X (2019) Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. Int J Mol Sci 20(8):1891. https://doi.org/10.3390/ijms20081891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shiang Y-C, Huang C-C, Chen W-Y, Chen P-C, Chang H-T (2012) Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem 22(26):12972–12982. https://doi.org/10.1039/C2JM30563A

    Article  CAS  Google Scholar 

  27. Bautista-Sánchez D et al (2020) The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Therapy - Nucleic Acids 20:409–420

    Article  PubMed  Google Scholar 

  28. Cao X et al (2021) Rapid and sensitive detection of dual lung cancer-associated miRNA biomarkers by a novel SERS-LFA strip coupling with catalytic hairpin assembly signal amplification. J Mater Chem C 9(10):3661–3671. https://doi.org/10.1039/D0TC05737A

    Article  CAS  Google Scholar 

  29. Zhang Y et al (2020) Label-Free Analysis of H5N1 Virus Based on Three-Segment Branched DNA-Templated Fluorescent Silver Nanoclusters. ACS Appl Mater Interfaces 12(43):48357–48362

    Article  CAS  PubMed  Google Scholar 

  30. Li Z-Y, Wu Y-T, Tseng W-L (2015) UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids. ACS Appl Mater Interfaces 7(42):23708–23716

    Article  CAS  PubMed  Google Scholar 

  31. Li H et al (2021) Intracellular CircRNA imaging and signal amplification strategy based on the graphene oxide-DNA system. Analytica Chimica Acta 1183:338966

    Article  CAS  PubMed  Google Scholar 

  32. Huang J, Ye L, Gao X, Li H, Xu J, Li Z (2015) Molybdenum disulfide-based amplified fluorescence DNA detection using hybridization chain reactions. J Mater Chem B 3(11):2395–2401. https://doi.org/10.1039/C4TB01986E

    Article  CAS  PubMed  Google Scholar 

  33. Hao N, Dai P-P, Yu T, Xu J-J, Chen H-Y (2015) A dual target-recycling amplification strategy for sensitive detection of microRNAs based on duplex-specific nuclease and catalytic hairpin assembly. Chem Commun 51(70):13504–13507. https://doi.org/10.1039/C5CC05350A

    Article  CAS  Google Scholar 

  34. Cai W, Xie S, Zhang J, Tang D, Tang Y (2017) An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction. Biosensors and Bioelectronics 98:466–472

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Hao W, Liu X, Sun X, Yan J, Wang Y (2020) Visual detection of miRNAs using enzyme-free amplification reactions and ratiometric fluorescent probes. Talanta 219:121332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Gratefully, this study was financially supported by the research Council of University of Tehran.

Author information

Authors and Affiliations

Authors

Contributions

Fatima Bazzi: Formal analysis, visualization, data curation, writing-original, draft, review and editing., Morteza Hosseini: Conceptualization, methodology, designing the analysis, visualization, writing-review and editing. Bahman Ebrahimi-Hoseinzadeh: Project administration, visualization, designing the analysis, Haider A.J. Al Lawati: writing-review and editing, Project consultant and Mohammad Reza Ganjali: Writing-review and editing.

Corresponding authors

Correspondence to Morteza Hosseini or Bahman Ebrahimi-Hoseinzadeh.

Ethics declarations

Conflicts of interest

The authors have no financial or non-financial conflicts of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AMELX, Amelogenin gene X; AMELY, Amelogenin gene Y; AuNCs, Gold nanoclusters; AgNCs, silver nanoclusters; CHA, catalytic hairpin assembly; HCR, hybridization chain reaction; AIE, aggregation induced emission.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 583 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzi, F., Hosseini, M., Ebrahimi-Hoseinzadeh, B. et al. A dual-targeting nanobiosensor for Gender Determination applying Signal Amplification Methods and integrating Fluorometric Gold and Silver Nanoclusters. Microchim Acta 190, 368 (2023). https://doi.org/10.1007/s00604-023-05947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05947-0

Keywords

Navigation