Skip to main content
Log in

pH-responsive magnetic graphene oxide composite as an adsorbent with high affinity for rapid capture of nucleosides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel pH-responsive magnetic graphene oxide composite (MGO@PEI-BA) is proposed for the first time as an adsorbent for the rapid capture and detection of nucleosides (cytidine, uridine, guanosine, and adenosine). The morphology, structure, and magnetic properties of the composite were evaluated using various characterization techniques. The results indicated that the composite was successfully fabricated. A series of parameters that affect extraction and elution were optimized through one-factor-at-a-time and Box-Behnken design of response surface methodology (BBD-RSM). The unique layered structures and easily accessible active sites of the composite facilitated molecular transport, resulting in instantaneous equilibrium of nucleosides adsorption within 5 min. Based on this study, a magnetic dispersive micro-solid-phase extraction (MD-μ-SPE) method assisted by the MGO@PEI-BA was developed in combination with UHPLC-UV analysis for the determination of nucleosides in rat urine. Under the optimum conditions, a wide linear range (10–2000 ng mL−1), good linearity (r > 0.99), low detection limits (1–3 ng mL−1), low relative standard deviations (RSDs ≤ 3.9%), and satisfactory recoveries (82.7–96.3%) were achieved. These results demonstrate that the MGO@PEI-BA is an excellent adsorbent for extracting nucleosides from biological samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Godoy AT, Eberlin MN, Simionato AVC (2020) Targeted metabolomics: liquid chromatography coupled to mass spectrometry method development and validation for the identification and quantitation of modified nucleosides as putative cancer biomarkers. Talanta 210:120640. https://doi.org/10.1016/j.talanta.2019.120640

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz-Mirazo K, Briones C, Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114(1):285–366. https://doi.org/10.1021/cr2004844

    Article  CAS  PubMed  Google Scholar 

  3. Mathé EA, Patterson AD, Haznadar M, Manna SK, Krausz KW, Bowman ED, Shields PG, Idle JR, Smith PB, Anami K, Kazandjian DG, Hatzakis E, Gonzalez FJ, Harris CC (2014) Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res 74(12):3259–3270. https://doi.org/10.1158/0008-5472.CAN-14-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng S, Zheng Z, Xu Y, Lin J, Chen G, Weng C, Lin D, Qiu S, Cheng M, Huang Z, Wang L, Chen R, Xie S, Zeng H (2017) A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography. Biosens Bioelectron 91:616–622. https://doi.org/10.1016/j.bios.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  5. Zhou GS, Yuan YC, Yin Y, Tang YP, Xu RJ, Liu Y, Chen PD, Yin L, Duan JA (2020) Hydrophilic interaction chromatography combined with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction for determination of underivatized neurotransmitters in dementia patients' urine samples. Anal Chim Acta 1107:74–84. https://doi.org/10.1016/j.aca.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  6. Pan Y, Guo X, Li S, Liu X, Zhang H (2018) A boronate-decorated porous carbon material derived from a zinc-based metal–organic framework for enrichment of cis-diol-containing nucleosides. New J Chem 42:2288–2294. https://doi.org/10.1039/C7NJ04575A

    Article  CAS  Google Scholar 

  7. Li H, Zhu S, Cheng T, Wang S, Zhu B, Liu X, Zhang H (2016) Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values. Microchim Acta 183:1779–1786. https://doi.org/10.1007/s00604-016-1808-5

    Article  CAS  Google Scholar 

  8. Shirani M, Akbari-adergani B, Rashidi Nodeh H, Shahabuddin S (2020) Ultrasonication-facilitated synthesis of functionalized graphene oxide for ultrasound-assisted magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G. Microchim Acta 187:634. https://doi.org/10.1007/s00604-020-04605-z

    Article  CAS  Google Scholar 

  9. Chen X, Hai X, Wang J (2016) Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta 922:1–10. https://doi.org/10.1016/j.aca.2016.03.050

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano letters 9(1):220–224. https://doi.org/10.1021/nl802810g

    Article  CAS  PubMed  Google Scholar 

  11. Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK (2021) Surface modifications and analytical applications of graphene oxide: a review. Trends Anal Chem 144:116448. https://doi.org/10.1016/j.trac.2021.116448

    Article  CAS  Google Scholar 

  12. Mourdikoudis S, Kostopoulou A, LaGrow AP (2021) Magnetic nanoparticle composites: synergistic effects and applications. Adv Sci (Weinh) 8(12):2004951. https://doi.org/10.1002/advs.202004951

    Article  CAS  PubMed  Google Scholar 

  13. Chang M, Wang Q, Liu X, Shi X, Xu G (2021) Facile synthesis of antibody-coupled polydopamine-coated magnetic graphene oxide composites for efficient immunopurification and metabolomics analysis of mitochondria. Anal Chem 93(32):11099–11107. https://doi.org/10.1021/acs.analchem.1c01101

    Article  CAS  PubMed  Google Scholar 

  14. Zheng H, Han F, Lin H, Cao L, Pavase TR, Sui J (2019) Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. Food Chem 294:468–476. https://doi.org/10.1016/j.foodchem.2019.05.023

    Article  CAS  PubMed  Google Scholar 

  15. Zhao N, Liu Z, Xing J, Zheng Z, Song F, Liu S (2020) Teamed boronate affinity-functionalized branched polyethyleneimine-modified magnetic nanoparticles for the selective capture of ginsenosides from rat plasma. Chem Eng J 383:123079. https://doi.org/10.1016/j.cej.2019.123079

    Article  CAS  Google Scholar 

  16. Park CW, Kim BH, Yang HM, Seo BK, Lee KW (2017) Enhanced desorption of Cs from clays by a polymeric cation-exchange agent. J Hazard Mater 327:127–134. https://doi.org/10.1016/j.jhazmat.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Cui J, Fan Q, Gan J, Liu C, Wang Y, Yang T, Wang J, Yang C (2022) Reversible and’\ highly Ordered biointerfaces for efficient capture and nondestructive release of circulating tumor cells. Anal Chem 94(26):9450–9458. https://doi.org/10.1021/acs.analchem.2c01743

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Qin Y, Zhong G, Cai C, Chen X, Chen C (2018) Highly efficient separation of glycoprotein by dual-functional magnetic metal-organic framework with hydrophilicity and boronic acid affinity. ACS Appl Mater Interfaces 10(33):27612–27620. https://doi.org/10.1021/acsami.8b07671

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44(22):8097–8123. https://doi.org/10.1039/c5cs00013k

    Article  CAS  PubMed  Google Scholar 

  20. Li H, He H, Liu Z (2021) Recent progress and application of boronate affinity materials in bioanalysis. Trends Anal Chem 140(1):116271. https://doi.org/10.1016/j.trac.2021.116271

    Article  CAS  Google Scholar 

  21. Yuan X, Gao X, Yuan Y, Ji Y, Xiong Z, Zhao L (2021) Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues. Talanta 224:121843. https://doi.org/10.1016/j.talanta.2020.121843

    Article  CAS  PubMed  Google Scholar 

  22. Usman MA, Khan AY (2022) Selective adsorption of anionic dye from wastewater using polyethyleneimine based macroporous sponge: batch and continuous studies. J Hazard Mater 428:128238. https://doi.org/10.1016/j.jhazmat.2022.128238

    Article  CAS  PubMed  Google Scholar 

  23. Abdipoor A, Taheri A, Rangin A (2022) New magnetic graphene oxide core–shell functionalized SBA-15 dual template imprinted polymer for μ-solid phase extraction of nortriptyline and amitriptyline in mice plasma. Sep Purif Technol 298:121615. https://doi.org/10.1016/j.seppur.2022.121615

    Article  CAS  Google Scholar 

  24. Liu C, Gu C, Huang W, Sheng X, Du J, Li Y (2019) Targeted UPLC-MS/MS high-throughput metabolomics approach to assess the purine and pyrimidine metabolism. J Chromatogr B 1113:98–106. https://doi.org/10.1016/j.jchromb.2019.03.008

    Article  CAS  Google Scholar 

  25. Hu Y, Huang Y, Tong Y, Xia Q, Tian M (2017) Boronate-affinity hollow molecularly imprinted polymers for the selective extraction of nucleosides. New J. Chem 41:7133–7141. https://doi.org/10.1039/C7NJ00148G

    Article  CAS  Google Scholar 

  26. Fan H, Chen P, Wang C, Wei Y (2016) Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides. J Chromatogr A 1448:20–31. https://doi.org/10.1016/j.chroma.2016.04.048

    Article  CAS  PubMed  Google Scholar 

  27. Liu D, Meng L, Huang L, Luo S (2020) Preparation of a boronate-affinity monolithic column for adsorption of nucleosides. Anal Methods 12(46):5635–5641. https://doi.org/10.1039/d0ay01860k

    Article  CAS  PubMed  Google Scholar 

  28. Cheng T, Li H, Ma Y, Liu X, Zhang H (2015) Synthesis of boronic-acid-functionalized magnetic attapulgite for selective enrichment of nucleosides. Anal Bioanal Chem 407(12):3525–3529. https://doi.org/10.1007/s00216-015-8550-4

    Article  CAS  PubMed  Google Scholar 

  29. Feng S, Zhang A, Wu F, Luo X, Zhang J (2022) In-situ growth of boronic acid-decorated metal-organic framework on Fe3O4 nanospheres for specific enrichment of cis-diol containing nucleosides. Anal. Chim. Acta 1206:339772. https://doi.org/10.1016/j.aca.2022.339772

    Article  CAS  PubMed  Google Scholar 

  30. He H, Wang Y, Zhou Z, Guo Y, Yan X, Lei Y, Shen X, Liu W, Luo L (2021) Boronate affinity directing adenosine imprinted nanomagnetic polyhedral oligomeric silsesquioxanes for selective extraction of nucleosides in urine sample. Microchem J 169:106575. https://doi.org/10.1016/j.microc.2021.106575

    Article  CAS  Google Scholar 

  31. Zhang Q, Zhou DD, Li F, Wang YZ, Yang FQ (2019) Extraction of nucleobases, nucleosides and nucleotides by employing a magnetized graphene oxide functionalized with hydrophilic phytic acid and titanium (IV) ions. Microchim Acta 186:187. https://doi.org/10.1007/s00604-019-3308-x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82174235 and 81773694).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Qin or Zhili Xiong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18721 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Yuan, Y., Xin, L. et al. pH-responsive magnetic graphene oxide composite as an adsorbent with high affinity for rapid capture of nucleosides. Microchim Acta 190, 365 (2023). https://doi.org/10.1007/s00604-023-05945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05945-2

Keywords

Navigation