Skip to main content

Advertisement

Log in

Aptamer-modified metal organic frameworks for measurement of food contaminants: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)–based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rather IA et al (2017) The sources of chemical contaminants in food and their health implications. Front Pharmacol 8:830

    PubMed  PubMed Central  Google Scholar 

  2. Rodriguez RS et al (2020) Sensing food contaminants: advances in analytical methods and techniques. Anal Chem 93(1):23–40

    PubMed  Google Scholar 

  3. Duan N et al (2016) Advances in aptasensors for the detection of food contaminants. Analyst 141(13):3942–3961

    CAS  PubMed  Google Scholar 

  4. Kuswandi B, Futra D, Heng L (2017) Nanosensors for the detection of food contaminants. In: Nanotechnology applications in food. Elsevier, pp 307–333

  5. Xu H et al (2017) Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction. Food Chem 232:198–202

    CAS  PubMed  Google Scholar 

  6. Song E et al (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325

    CAS  PubMed  Google Scholar 

  7. Weston M, Geng S, Chandrawati R (2021) Food sensors: challenges and opportunities. Adv Mater Technol 6(5):2001242

    CAS  Google Scholar 

  8. Elfadil D et al (2021) Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis. Molecules 26(15):4607

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma R et al (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron 74:612–627

    CAS  PubMed  Google Scholar 

  10. Zhang Z et al (2021) Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 118:569–588

    CAS  Google Scholar 

  11. Naghdi S et al (2023) Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). J Hazard Mater 442:130127

    CAS  PubMed  Google Scholar 

  12. Khoshbin Z et al (2022) Metal organic frameworks as advanced functional materials for aptasensor design. Spectrochim Acta - Part A: Mol Biomol Spectrosc 2022:276

  13. Duan N et al (2020) A visual and sensitive detection of Escherichia coli based on aptamer and peroxidase-like mimics of copper-metal organic framework nanoparticles. Food Anal Methods 13(7):1433–1441

    Google Scholar 

  14. Khoshbin Z et al (2022) A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: a critical role of metal organic frameworks. Talanta 246:123514

    CAS  PubMed  Google Scholar 

  15. Li M et al (2021) Recent advances in metal-organic framework-based electrochemical biosensing applications. Front Bioeng Biotechnol 9:2296–4185

  16. Xing S, Cheng S, Tan M (2023) Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 1–17

  17. Song Y et al (2021) A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochim Acta 368:137609

    CAS  Google Scholar 

  18. Falsafi M et al (2021) Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer. Micropor Mesopor Mat 325:111337

  19. González CMO et al (2021) Synthesis and applications of MOF-derived nanohybrids: a review. Mater Today: Proc 46:3018–3029

    Google Scholar 

  20. Helal A et al (2017) Multivariate metal-organic frameworks. Natl Sci Rev 4(3):296–298

    CAS  Google Scholar 

  21. Jahangiri-Dehaghani F, Zare HR, Shekari Z (2020) Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label–free electrochemical aptasensor based on platinum nanoparticles loaded on Fe–based metal–organic frameworks. Food Chem 310:125820

    CAS  PubMed  Google Scholar 

  22. Howarth AJ et al (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 1(3):1–15

    Google Scholar 

  23. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    CAS  PubMed  Google Scholar 

  24. Mishra GK, Sharma V, Mishra RK (2018) Electrochemical aptasensors for food and environmental safeguarding: a review. Biosensors 8(2):28

    PubMed  PubMed Central  Google Scholar 

  25. Omarova A et al (2022) A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 175:107147

    CAS  Google Scholar 

  26. Kim D-M et al (2021) Recent advances in micro/nanomaterial-based aptamer selection strategies. Molecules 26(17):5187

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang K et al (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6

    CAS  PubMed  Google Scholar 

  28. Stewart KD, Tan W, Park JY (2019) Aptamer selection for detecting molecular target using cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. In: Theranostics. Springer, pp 223–241

  29. Zhang K et al (2020) Application of multiplexed aptasensors in food contaminants detection. ACS sensors 5(12):3721–3738

    CAS  PubMed  Google Scholar 

  30. Sun S et al (2023) Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater 20:166–178

    CAS  PubMed  Google Scholar 

  31. Jia Y et al (2020) A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 219:121342

  32. Jahangiri-Dehaghani F, Zare HR, Shekari Z (2022) A non-label electrochemical aptasensor based on Cu metal–organic framework to measure aflatoxin B1 in wheat flour. Food Anal Methods 15(1):192–202

    Google Scholar 

  33. Khoshbin Z et al (2022) Metal organic frameworks as advanced functional materials for aptasensor design. Spectrochim Acta A Mol Biomol Spectrosc 276:121251

    CAS  PubMed  Google Scholar 

  34. Karimzadeh Z et al (2022) Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: promising development opportunities and translational challenges. TrAC Trends Anal Chem 152:116622

    CAS  Google Scholar 

  35. Randhawa G, Singh M, Sood P (2016) DNA-based methods for detection of genetically modified events in food and supply chain. Curr Sci 110(6):1000–1009

  36. Alarcon CM et al (2018) Application of DNA-and protein-based detection methods in agricultural biotechnology. J Agric Food Chem 67(4):1019–1028

    Google Scholar 

  37. Madesis P et al (2014) Advances of DNA-based methods for tracing the botanical origin of food products. Food Res Int 60:163–172

    CAS  Google Scholar 

  38. Chen J-Q et al (2017) PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Sci Human Wellness 6(2):39–59

    Google Scholar 

  39. Kojabad AA et al (2021) Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 93(7):4182–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Umesha S, Manukumar H (2018) Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit Rev Food Sci Nutr 58(1):84–104

    CAS  PubMed  Google Scholar 

  41. Chapela M-J, Garrido-Maestu A, Cabado AG (2015) Detection of foodborne pathogens by qPCR: a practical approach for food industry applications. Cogent Food Agric 1(1):1013771

    Google Scholar 

  42. Garrido-Maestu A, Tomás Fornés D, Prado Rodríguez M (2019) The use of multiplex real-time PCR for the simultaneous detection of foodborne bacterial pathogens. In: Foodborne Bacterial Pathogens. Springer, pp 35–45

  43. Tao J et al (2020) A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. J Food Sci 85(3):744–754

    CAS  PubMed  Google Scholar 

  44. McMahon TC et al (2017) Multiplexed single intact cell droplet digital PCR (MuSIC ddPCR) method for specific detection of enterohemorrhagic E. coli (EHEC) in food enrichment cultures. Front Microbiol 8:332

    PubMed  PubMed Central  Google Scholar 

  45. Hunter ME et al (2017) Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Mol Ecol Resour 17(2):221–229

    CAS  PubMed  Google Scholar 

  46. Bootz F et al (2003) Comparison of the sensitivity of in vivo antibody production tests with in vitro PCR-based methods to detect infectious contamination of biological materials. Lab Anim 37(4):341–351

    CAS  PubMed  Google Scholar 

  47. Cheng C-M et al (2008) Rapid detection of Salmonella in foods using real-time PCR. J Food Prot 71(12):2436–2441

    CAS  PubMed  Google Scholar 

  48. Tevell Åberg A, Björnstad K, Hedeland M (2013) Mass spectrometric detection of protein-based toxins. Biosecur Bioterror: Biodefense Strategy, Practice, and Science 11(S1):S215–S226

    Google Scholar 

  49. Xiong Y et al (2020) Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC Trends Anal Chem 126:115861

    CAS  Google Scholar 

  50. Wu L et al (2019) Application of nano-ELISA in food analysis: recent advances and challenges. TrAC Trends Anal Chem 113:140–156

    CAS  Google Scholar 

  51. Nielen M et al (2011) Desorption electrospray ionization mass spectrometry in the analysis of chemical food contaminants in food. TrAC Trends Anal Chem 30(2):165–180

    CAS  Google Scholar 

  52. Xiong Y et al (2018) Plasmonic ELISA based on enzyme-assisted etching of Au nanorods for the highly sensitive detection of aflatoxin B1 in corn samples. Sens Actuators B 267:320–327

    CAS  Google Scholar 

  53. Anfossi L et al (2013) Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem 405(2):467–480

    CAS  PubMed  Google Scholar 

  54. Dzantiev BB et al (2014) Immunochromatographic methods in food analysis. TrAC Trends Anal Chem 55:81–93

    CAS  Google Scholar 

  55. Wu Y et al (2021) Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 118:658–678

    CAS  Google Scholar 

  56. Pilolli R, Monaci L, Visconti A (2013) Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends Anal Chem 47:12–26

    CAS  Google Scholar 

  57. Piro B et al (2016) Comparison of electrochemical immunosensors and aptasensors for detection of small organic molecules in environment, Food Safety, Clinical and Public Security. Biosensors 6(1):7

  58. Aranda PR et al (2018) Nanomaterials in fluorescent laser-based immunosensors: review and applications. Microchem J 141:308–323

    CAS  Google Scholar 

  59. Jia M et al (2021) Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends Anal Chem 136:116193

    CAS  Google Scholar 

  60. Dong Y et al (2014) Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr 54(12):1548–1561

    CAS  PubMed  Google Scholar 

  61. Wang T et al (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37(1):28–50

    CAS  PubMed  Google Scholar 

  62. Lv M et al (2021) Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 176:112947

    CAS  PubMed  Google Scholar 

  63. Paniel N et al (2017) Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor. Talanta 162:232–240

    CAS  PubMed  Google Scholar 

  64. Guo Z et al (2022) Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 132:108498

    CAS  Google Scholar 

  65. Yan C et al (2018) Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem 260:208–212

    CAS  PubMed  Google Scholar 

  66. Li F et al (2019) Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta 1051:1–23

    CAS  PubMed  Google Scholar 

  67. Xie M et al (2022) Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 131:108399

    CAS  Google Scholar 

  68. Zhang Y, Lai BS, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24(5):941

    PubMed  PubMed Central  Google Scholar 

  69. Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal Chem 107:60–77

    CAS  Google Scholar 

  70. Zhou Y et al (2019) Determination of malachite green in fish by a modified MOF-based electrochemical sensor. Food Anal Methods 12(5):1246–1254

    Google Scholar 

  71. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34(11):2366–2388

    CAS  Google Scholar 

  72. Safaei M et al (2019) A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem 118:401–425

    CAS  Google Scholar 

  73. Gangu KK et al (2016) A review on contemporary metal–organic framework materials. Inorg Chim Acta 446:61–74

    CAS  Google Scholar 

  74. Kukkar P et al (2021) Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev 446:214109

    CAS  Google Scholar 

  75. Burnett BJ, Barron PM, Choe W (2012) Recent advances in porphyrinic metal–organic frameworks: materials design, synthetic strategies, and emerging applications. CrystEngComm 14(11):3839–3846

    CAS  Google Scholar 

  76. Kumar P, Deep A, Kim K-H (2015) Metal organic frameworks for sensing applications. TrAC Trends Anal Chem 73:39–53

    CAS  Google Scholar 

  77. Wang T et al (2018) Self-sacrificial template synthesis of mixed-valence-state cobalt nanomaterials with high catalytic activities for colorimetric detection of glutathione. Sens Actuators B 254:329–336

    CAS  Google Scholar 

  78. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. ACS Publications 112(2):673–674

  79. Liu Q et al (2019) Metal-organic framework-based fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis. Analyst 144(6):1916–1922

    CAS  PubMed  Google Scholar 

  80. Liu Y et al (2019) Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. J Mater Chem C 7(35):10743–10763

    CAS  Google Scholar 

  81. Song J et al (2022) Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem Eng J 427:130913

    CAS  Google Scholar 

  82. Mu Z et al (2022) A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated PN-CNTs as signal enhanced indicator. Appl Surf Sci 573:151601

    CAS  Google Scholar 

  83. Yang Z et al (2022) Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 133:108684

    CAS  Google Scholar 

  84. Yin Z et al (2019) Recent advances in post-synthetic modification of metal–organic frameworks: new types and tandem reactions. Coord Chem Rev 378:500–512

    CAS  Google Scholar 

  85. Xiang Z et al (2014) An amino group functionalized metal–organic framework as a luminescent probe for highly selective sensing of Fe 3+ ions. J Mater Chem A 2(21):7662–7665

    CAS  Google Scholar 

  86. Lv M et al (2021) Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 176:112947

  87. Wang Q, Sun J, Wei D (2022) Two-dimensional metal-organic frameworks and covalent organic frameworks. Chin J Chem 40(11):1359–1385

  88. Rojas S, Horcajada P (2020) Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem Rev 120(16):8378–8415

    CAS  PubMed  Google Scholar 

  89. Liu B et al (2022) Metal-organic frameworks functionalized with nucleic acids and amino acids for structure-and function-specific applications: a tutorial review. Chem Eng J 428:131118

    CAS  Google Scholar 

  90. Chen G et al (2017) Design of porous/hollow structured ceria by partial thermal decomposition of Ce-MOF and selective etching. ACS Appl Mater Interfaces 9(45):39594–39601

    CAS  PubMed  Google Scholar 

  91. He C et al (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136(14):5181–5184

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ling P et al (2015) Porphyrin-encapsulated metal–organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal Chem 87(7):3957–3963

    CAS  PubMed  Google Scholar 

  93. Tolentino MQ et al (2020) Controlled release of small molecules and proteins from DNA-surfactant stabilized metal organic frameworks. J Mater Chem B 8(26):5627–5635

    CAS  PubMed  Google Scholar 

  94. Liu B et al (2022) Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: a tutorial review. Chem Eng J 428:131118

    CAS  Google Scholar 

  95. Chang J et al (2019) Nucleic acid-functionalized metal–organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 91(5):3604–3610

    CAS  PubMed  Google Scholar 

  96. Wang XZ et al (2020) Solvothermal and ultrasonic preparation of two unique cluster-based Lu and Y coordination materials: metal–organic framework-based ratiometric fluorescent biosensor for an ornidazole and ronidazole and sensing platform for a biomarker of amoeba liver abscess. Inorg Chem 59(5):2910–2922

    CAS  PubMed  Google Scholar 

  97. Wang P et al (2022) One-step simultaneous quantitative detection of three pesticides based on bimetallic organic framework nanomaterials and aptamers. Anal Sci 38(2):299–305

    CAS  PubMed  Google Scholar 

  98. Shahrokhian S, Ranjbar S (2018) Aptamer immobilization on amino-functionalized metal–organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7. Analyst 143(13):3191–3201

    CAS  PubMed  Google Scholar 

  99. Dai G et al (2019) Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchimica Acta 186(9):620

    PubMed  Google Scholar 

  100. Wang W et al (2020) A universal signal-on electrochemical assay for rapid on-site quantitation of vibrio parahaemolyticus using aptamer modified magnetic metal–organic framework and phenylboronic acid-ferrocene co-immobilized nanolabel. Anal Chim Acta 1133:128–136

    CAS  PubMed  Google Scholar 

  101. Feng D et al (2019) Electrochemiluminecence nanogears aptasensor based on MIL-53(Fe)@CdS for multiplexed detection of kanamycin and neomycin. Biosens Bioelectron 129:100–106

    CAS  PubMed  Google Scholar 

  102. Yao X et al (2020) A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH2/MCA/MWCNT@rGONR nanocomposites. Anal Methods 12(41):4967–4976

    CAS  PubMed  Google Scholar 

  103. Wen J et al (2021) Ultrasensitive ECL aptasensing of kanamycin based on synergistic promotion strategy using 3,4,9,10-perylenetetracar-boxylic-L-cysteine/Au@HKUST-1. Anal Chim Acta 1180:338780

  104. Liu X et al (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68

    CAS  PubMed  Google Scholar 

  105. Meng X et al (2020) Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling. Anal Chim Acta 1125:1–7

    CAS  PubMed  Google Scholar 

  106. Huang S et al (2018) Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta 179:28–36

    CAS  PubMed  Google Scholar 

  107. Huang S et al (2019) Portable fluoride-selective electrode as signal transducer for sensitive and selective detection of trace antibiotics in complex samples. Biosens Bioelectron 128:113–121

    CAS  PubMed  Google Scholar 

  108. Chen M et al (2017) A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens Actuators B 242:1201–1209

    CAS  Google Scholar 

  109. Liu S et al (2020) A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 149:111801

  110. Yang Q et al (2018) A two dimensional metal–organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Anal Chim Acta 1020:1–8

    CAS  PubMed  Google Scholar 

  111. Luan Q et al (2018) A multiple signal amplified colorimetric aptasensor for antibiotics measurement using DNAzyme labeled Fe-MIL-88-Pt as novel peroxidase mimic tags and CSDP target-triggered cycles. Talanta 187:27–34

    CAS  PubMed  Google Scholar 

  112. Zhou N et al (2019) Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron 127:92–100

    CAS  PubMed  Google Scholar 

  113. Chen M et al (2016) An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification. Talanta 161:867–874

    CAS  PubMed  Google Scholar 

  114. Wei P et al (2022) Coni bimetallic metal-organic frameworks and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Appl Surf Sci 604:154369

  115. Lv L et al (2022) A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection Enrofloxacin. J Electroanal Chem 911:116251

  116. Guo C et al (2020) Semiconducting CuxNi3- x (hexahydroxytriphenylene)2framework for electrochemical aptasensing of C6 glioma cells and epidermal growth factor receptor. J Mater Chem B 8(43):9951–9960

    CAS  PubMed  Google Scholar 

  117. Zhang Y, Ren HX, Miao YB (2019) Visualization and colorimetric determination of clenbuterol in pork by using magnetic beads modified with aptamer and complementary DNA as capture probes, and G-quadruplex/hemin and DNA antibody on the metal-organic framework MIL-101(Fe) acting as a peroxidase mimic. Microchimica Acta 186(8):515

  118. Zhang Y et al (2021) Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Microchimica Acta 188(8):286

  119. Wang S et al (2019) Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection. Anal Chim Acta 1047:150–162

    CAS  PubMed  Google Scholar 

  120. Zhou L et al (2021) A highly-enhanced electrochemiluminescence luminophore generated by a metal-organic framework-linked perylene derivative and its application for ractopamine assay. Analyst 146(6):2029–2036

    CAS  PubMed  Google Scholar 

  121. Feng D et al (2020) Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode. Anal Chim Acta 1100:232–239

    CAS  PubMed  Google Scholar 

  122. Salandari-Jolge N, Ensafi AA, Rezaei B (2021) Ultra-sensitive electrochemical aptasensor based on zeolitic imidazolate framework-8 derived Ag/Au core-shell nanoparticles for mercury detection in water samples. Sens Actuators B 331:129426

    CAS  Google Scholar 

  123. Xu W et al (2017) Label-free and enzyme-free strategy for sensitive electrochemical lead aptasensor by using metal-organic frameworks loaded with AgPt nanoparticles as signal probes and electrocatalytic enhancers. Electrochim Acta 251:25–31

    CAS  Google Scholar 

  124. Zhang J et al (2022) Electrochemical aptasensor for aflatoxin B1 detection using cerium dioxide nanoparticle supported on iron-porphyrinic metal–organic framework as signal probes. Microchem J 181:107716

    CAS  Google Scholar 

  125. Meng D, Gan X, Tian T (2022) An electrochemical sensing method for aflatoxin B1 detection based on Pt-coordinated titanium-based porphyrin MOF. Int J Electrochem Sci 17(2):220247

  126. Sun Y, Zhang Y, Wang Z (2021) A “turn-on” FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sens Actuators B Chem 347:130661

  127. Hou S et al (2020) Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 117:107331

    CAS  Google Scholar 

  128. Wen X et al (2021) A multifunctional n-doped cu–mofs (N–cu–mof) nanomaterial-driven electrochemical aptasensor for sensitive detection of deoxynivalenol. Molecules 26(8):2243

  129. Duan F et al (2022) Electrochemical aptasensing strategy based on a multivariate polymertitanium-metal-organic framework for zearalenone analysis. Food Chem 385:132654

  130. Sun Y et al (2022) Sensitive colorimetric aptasensor based on stimuli-responsive metal-organic framework nano-container and trivalent DNAzyme for zearalenone determination in food samples. Food Chem 371:131145

  131. Song Y et al (2021) Novel impedimetric sensing strategy for detecting ochratoxin A based on NH2-MIL-101(Fe) metal-organic framework doped with cobalt phthalocyanine nanoparticles. Food Chem 351:129248

  132. Qiao X et al (2021) A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets. Sens Actuators B 334:129682

    CAS  Google Scholar 

  133. Qiu W et al (2020) Specific coordination between Zr-MOF and phosphate-terminated DNA coupled with strand displacement for the construction of reusable and ultrasensitive aptasensor. Anal Chem 92(16):11332–11340

    CAS  PubMed  Google Scholar 

  134. Zhao X et al (2021) A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal Chim Acta 1160:338450

  135. Tan X et al (2021) A switchable and signal-amplified aptasensor based on metal organic frameworks as the quencher for turn-on detection of T-2 mycotoxin. Anal Bioanal Chem 413(26):6595–6603

    CAS  PubMed  Google Scholar 

  136. Zhao Y et al (2021) Europium-based metal-organic framework containing characteristic metal chains: a novel turn-on fluorescence sensor for simultaneous high-performance detection and removal of tetracycline. Sens Actuators B 334:129610

    CAS  Google Scholar 

  137. Qiao X et al (2019) Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta 1050:51–59

    CAS  PubMed  Google Scholar 

  138. Su Z et al (2022) Determination of acetamiprid by fluorescence monitoring of a glycine-L-histidine copper-organic framework aptasensor. Anal Lett 55(4):529–538

    CAS  Google Scholar 

  139. Liu Q et al (2020) Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property. Microchimica Acta 187(9):524

    CAS  PubMed  Google Scholar 

  140. Liu Q et al (2019) Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal–organic frameworks. Analyst 144(20):6025–6032

    CAS  PubMed  Google Scholar 

  141. Li Y et al (2022) Fabrication of carbon dots@hierarchical mesoporous ZIF-8 for simultaneous ratiometric fluorescence detection and removal of tetracycline antibiotics. Sens Actuators B 358:131526

    CAS  Google Scholar 

  142. Huang S et al (2021) Diverse metal ions-doped titanium-based metal-organic frameworks as novel bioplatforms for sensitively detecting bisphenol A. Electrochim Acta 384:138403

    CAS  Google Scholar 

  143. Duan Y et al (2020) Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform. Mater Sci Eng C 108:110501

    CAS  Google Scholar 

  144. Khoshbin Z et al (2022) A simple and ultrasensitive metal-organic framework-based aptasensor for fluorescence detection of ethanolamine. Spectrochim Acta A Mol Biomol Spectrosc 267:120488

  145. Sun Y et al (2019) Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal Chim Acta 1083:101–109

    CAS  PubMed  Google Scholar 

  146. van Elsland D, Neefjes J (2018) Bacterial infections and cancer. EMBO Rep 19(11):e46632

    PubMed  PubMed Central  Google Scholar 

  147. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4(3):482–501

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Váradi L et al (2017) Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 46(16):4818–4832

    PubMed  Google Scholar 

  149. Kumar A et al (2019) Chapter 2 - aptamer technology for the detection of foodborne pathogens and toxins. Advanced Biosensors for Health Care Applications. Elsevier, pp 45–69

  150. Shahrokhian S, Ranjbar S (2018) Aptamer immobilization on amino-functionalized metal–organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157: H7. Analyst 143(13):3191–3201

    CAS  PubMed  Google Scholar 

  151. Zhu X et al (2015) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Interfaces 7(1):223–231

    CAS  PubMed  Google Scholar 

  152. Scharff RL (2015) State estimates for the annual cost of foodborne illness. J Food Prot 78(6):1064–1071

    PubMed  Google Scholar 

  153. Dai G et al (2019) Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchimica Acta 186(9):1–9

    CAS  Google Scholar 

  154. Lee S-C et al (2017) Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer. Microchimica Acta 184(8):2611–2620

    CAS  Google Scholar 

  155. Turner NW et al (2015) Analytical methods for determination of mycotoxins: an update (2009–2014). Anal Chim Acta 901:12–33

    CAS  PubMed  Google Scholar 

  156. Weaver AC, Adams N, Yiannikouris A (2020) Invited review: use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Appl Anim Behav 36(1):19–25

    Google Scholar 

  157. Zahra N et al (2019) A review of mycotoxin types, occurrence, toxicity, detection methods and control: review: review of mycotoxin types. Biol Sci 62(3):206–218

    CAS  Google Scholar 

  158. Zeng X et al (2020) Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Research 13(6):1527–1535

    CAS  Google Scholar 

  159. Tola M, Kebede B (2016) Occurrence, importance and control of mycotoxins: a review. Cogent Food Agric 2(1):1191103

    Google Scholar 

  160. Zolfaghari H, Khezerlou A (2020) Detoxification of aflatoxin B1 by probiotic yeasts and bacteria isolated from dairy products of Iran. Adv Pharm Bull 10(3):482–487

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Anater A et al (2016) Mycotoxins and their consequences in aquaculture: a review. Aquaculture 451:1–10

    CAS  Google Scholar 

  162. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15(2):129–144

    CAS  Google Scholar 

  163. Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167(2):101–134

    CAS  PubMed  Google Scholar 

  164. Schothorst RC, van Egmond HP (2004) Report from SCOOP task 3.2. 10 “collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states”: Subtask: trichothecenes. Toxicol Lett 153(1):133–143

    CAS  PubMed  Google Scholar 

  165. Wu Q et al (2020) An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 94(11):3645–3669

    CAS  PubMed  Google Scholar 

  166. Zhao X et al (2021) A fluorescence aptasensor based on controlled zirconium–based MOFs for the highly sensitive detection of T–2 toxin. Spectrochim Acta A Mol Biomol Spectrosc 259:119893

    CAS  PubMed  Google Scholar 

  167. Lee HJ, Ryu D (2017) Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem 65(33):7034–7051

    CAS  PubMed  Google Scholar 

  168. Xue-Mei Z et al (2019) Screening of oligonucleotide aptamers and application in detection of pesticide and veterinary drug residues. Chin J Anal Chem 47(4):488–499

    Google Scholar 

  169. Luan Y et al (2020) Advances in the application of aptamer biosensors to the detection of aminoglycoside antibiotics. Antibiotics 9(11):787

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen M et al (2017) A novel aptamer-metal ions-nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens Actuators B 242:1201–1209

    CAS  Google Scholar 

  171. Wen J et al (2021) Ultrasensitive ECL aptasensing of kanamycin based on synergistic promotion strategy using 3,4,9,10-perylenetetracar-boxylic-l-cysteine/Au@HKUST-1. Anal Chim Acta 1180:338780

    CAS  PubMed  Google Scholar 

  172. Wei X et al (2013) Fluorescence biosensor for the H 5 N 1 antibody based on a metal–organic framework platform. J Mater Chem B 1(13):1812–1817

    CAS  PubMed  Google Scholar 

  173. Peng Y et al (2014) Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346(6215):1356–1359

    CAS  PubMed  Google Scholar 

  174. Timothy N’a, Williams ET (2019) Environmental pollution by heavy metal: an overview. Chemistry 3(2):72–82

    Google Scholar 

  175. Borrill AJ, Reily NE, Macpherson JV (2019) Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 144(23):6834–6849

    CAS  PubMed  Google Scholar 

  176. Khezerlou A et al (2021) Assessment of heavy metal contamination and the probabilistic risk via salad vegetable consumption in Tabriz, Iran. Biol Trace Elem Res 199(7):2779–2787

    CAS  PubMed  Google Scholar 

  177. USEPA E (2013) Regional screening level (RSL) summary table (TR= 1E− 6, HQ= 1)

  178. Boudebbouz A et al (2021) Heavy metals levels in raw cow milk and health risk assessment across the globe: a systematic review. Sci Total Environ 751:141830

    CAS  PubMed  Google Scholar 

  179. De Toni L et al (2017) Phthalates and heavy metals as endocrine disruptors in food: a study on pre-packed coffee products. Toxicol Rep 4:234–239

    PubMed  PubMed Central  Google Scholar 

  180. Tudi M et al (2021) Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18(3):1112

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Abdollahdokht D et al (2022) Conventional agrochemicals towards nano-biopesticides: an overview on recent advances. Chem Biol Technol Agric 9(1):1–19

    Google Scholar 

  182. Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26(9):1337–1348

    CAS  Google Scholar 

  183. Ramankutty N et al (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69(1):789–815

  184. Singh NS et al (2018) Pesticide contamination and human health risk factor. In: Modern age environmental problems and their remediation. Springer, pp 49–68

  185. Rani L et al (2021) An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod 283:124657

    CAS  Google Scholar 

  186. Wang N et al (2022) Aptamer-binding zirconium-based metal-organic framework composites prepared by two conjunction approaches with enhanced bio-sensing for detecting isocarbophos. Talanta 236:122822

  187. Liu Q et al (2020) Magnetically controlled colorimetric aptasensor for chlorpyrifos based on copper-based metal-organic framework nanoparticles with peroxidase mimetic property. Microchimica acta 187(9):1–9

    Google Scholar 

  188. Cverenkárová K et al (2021) Microplastics in the food chain. Life 11(12):1349

    PubMed  PubMed Central  Google Scholar 

  189. Allsop TD et al (2019) An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosens Bioelectron 135:102–110

    CAS  PubMed  Google Scholar 

  190. Song Y et al (2020) Ultrasensitive detection of bisphenol A under diverse environments with an electrochemical aptasensor based on multicomponent AgMo heteronanostructure. Sens Actuators B 321:128527

    CAS  Google Scholar 

  191. Olatunde A et al (2022) Vanillin: A food additive with multiple biological activities. Eur J Med Chem 5:100055

    CAS  Google Scholar 

  192. Anuradha K, Shyamala BN, Naidu MM (2013) Vanilla-its science of cultivation, curing, chemistry, and nutraceutical properties. Crit Rev Food Sci Nutr 53(12):1250–1276

    CAS  PubMed  Google Scholar 

  193. Pérez-Cejuela HM, Herrero-Martínez JM, Simó-Alfonso EF (2020) Recent advances in affinity MOF-based sorbents with sample preparation purposes. Molecules 25(18):4216

  194. Imaz I et al (2011) Metal–biomolecule frameworks (MBioFs). Chem Commun 47(26):7287–7302

    CAS  Google Scholar 

Download references

Acknowledgements

The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 68658). Also, this study has been approved and supported by Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. We gratefully acknowledge their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Ehsani or Hossein Kazemian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Milad Tavassoli and Arezou Khezerlou are equal first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, M., Khezerlou, A., Khalilzadeh, B. et al. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Microchim Acta 190, 371 (2023). https://doi.org/10.1007/s00604-023-05937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05937-2

Keywords

Navigation