Skip to main content
Log in

Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

As a front-line chemotherapeutic drug for maintenance and consolidation therapy, methotrexate (MTX) has widely been applied to treat various tumors and some inflammatory diseases. However, because of its severe toxicity ascribed to low selectivity, it is necessary to monitor therapeutic drugs in high-dose MTX therapeutic regimens to ensure treatment safety. In this work, we developed a fluorescent immunochromatographic test strip (FITS) for monitoring MTX by employing time-resolved fluorescent microspheres as signal probes. With a competitive immunoassay mode, the FITS for MTX shows a super-wide dynamic range of 10 pM–10 μM, covering the entire clinical therapeutic concentration range of MTX. Therapeutic drug monitoring of MTX can be achieved within 7 min with high specificity, facilitating the timely rescue of drug poisoning led by high-dose MTX treatment. The method was employed for monitoring MTX in the spiked human serum, urine, and milk, showing acceptable recoveries ranging from 94.0 to 110.0%. The established FITS has been applied to MTX detection in serum obtained from high-dose MTX treatment. The results from FITS and enzyme multiplied immunoassay technique showed no significant difference, suggesting its reliability for usage in real biological samples. The device shows promise in point-of-care therapeutic drug monitoring for resource-limited countries and institutes, which significantly facilitates overcoming the lag time between sampling and results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jolivet J, Cowan KH, Curt GA et al (1983) The pharmacology and clinical use of methotrexate. N Engl J Med 309:1094–1104

    Article  CAS  PubMed  Google Scholar 

  2. Malard F, Mohty M (2020) Acute lymphoblastic leukaemia. Lancet 395:1146–1162

    Article  CAS  PubMed  Google Scholar 

  3. Larsen EC, Devidas M, Chen S et al (2016) Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from children’s oncology group study AALL0232. J Clin Oncol 34:2380–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hui KH, Chu HM, Fong PS et al (2019) Population pharmacokinetic study and individual dose adjustments of high-dose methotrexate in Chinese pediatric patients with acute lymphoblastic leukemia or osteosarcoma. J Clin Pharmacol 59:566–577

    Article  CAS  PubMed  Google Scholar 

  5. Howard SC, McCormick J, Pui C-H et al (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21:1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He JQ, Wang JY, Zhang M et al (2021) Selection of a structure-switching aptamer for the specific methotrexate detection. ACS Sens 6:2436–2441

    Article  CAS  Google Scholar 

  7. Schmiegelow K, Attarbaschi A, Barzilai S et al (2016) Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol 17:e231–e239

    Article  PubMed  Google Scholar 

  8. Paci A, Veal G, Bardin C et al (2014) Review of therapeutic drug monitoring of anticancer drugs part 1 – cytotoxics. Eur J Cancer 50:2010–2019

    Article  CAS  PubMed  Google Scholar 

  9. Goksel Y, Zor K, Rind T et al (2021) Quantification of methotrexate in human serum using surface-enhanced raman scattering-toward therapeutic drug monitoring. ACS Sens 6:2664–2673

    Article  CAS  PubMed  Google Scholar 

  10. Freudenberger K, Hilbig U, Gauglitz G (2016) Recent advances in therapeutic drug monitoring of immunosuppressive drugs. TrAC Trends Anal Chem 79:257–268

    Article  CAS  Google Scholar 

  11. Li WL, Li R, Liu HJ et al (2017) A comparison of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) for the determination of the cyclosporin A concentration in whole blood from Chinese patients. Biosci Trends 11:475–482

    Article  CAS  PubMed  Google Scholar 

  12. Bojescu E-D, Prim D, Pfeifer ME et al (2022) Fluorescence-polarization immunoassays within glass fiber micro-chambers enable tobramycin quantification in whole blood for therapeutic drug monitoring at the point of care. Anal Chim Acta 1225:340240

    Article  CAS  PubMed  Google Scholar 

  13. Sogawa R, Saita T, Yamamoto Y et al (2019) Development of a competitive enzyme-linked immunosorbent assay for therapeutic drug monitoring of afatinib. J Pharm Anal 9:49–54

    Article  PubMed  Google Scholar 

  14. Ates HC, Roberts JA, Lipman J et al (2020) On-site therapeutic drug monitoring. Trends Biotechnol 38:1262–1277

    Article  CAS  PubMed  Google Scholar 

  15. Papamichael K, Afif W, Drobne D et al (2022) Therapeutic drug monitoring of biologics in inflammatory bowel disease: unmet needs and future perspectives. Lancet Gastroenterol Hepatol 7:171–185

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robert DC, Nina CD, Evelyn S et al (2022) Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine- a review. Microchim Acta 189:142

    Article  Google Scholar 

  17. Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu JZ, Meng HM, Zhang L et al (2021) Dual-readout test strips platform for portable and highly sensitive detection of alkaline phosphatase in human serum samples. Chin Chem Lett 32:3421–3425

    Article  CAS  Google Scholar 

  19. Liu JZ, Ji DY, Meng HM et al (2018) A portable fluorescence biosensor for rapid and sensitive glutathione detection by using quantum dots-based lateral flow test strip. Sens Actuators B 262:486–492

    Article  CAS  Google Scholar 

  20. Chen J, Meng H-M, An Y et al (2020) A fluorescent nanosphere-based immunochromatography test strip for ultrasensitive and point-of-care detection of tetanus antibody in human serum. Anal Bioanal Chem 412:1151–1158

    Article  CAS  PubMed  Google Scholar 

  21. Fariba M, Nader Z-S, Mehrorang G (2022) A review on corona virus disease 2019 (COVID-19): current progress, clinical features and bioanalytical diagnostic methods. Microchim Acta 189:103

    Article  Google Scholar 

  22. Song ZW, Hu Y, Liu S et al (2022) Medication therapy of high-dose methotrexate: an evidence-based practice guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Br J Clin Pharmacol 88:2456–2472

    Article  CAS  PubMed  Google Scholar 

  23. (2019) Expert consensus on high-dose methotrexate calcium folinate rescue therapy for malignant tumors. Chin J Clin Oneol 46:761–767

  24. He JQ, Wang JY, Zhang M et al (2023) Ultrasensitive therapeutic drug monitoring of methotrexate by a structure-switching aptamer with cascade primer exchange reaction. Analyst 148:222–226

    Article  CAS  PubMed  Google Scholar 

  25. Inoue A, Ohmuro-Matsuyama Y, Kitaguchi T et al (2020) (2020) Creation of a nanobody-based fluorescent immunosensor Mini Q-body for rapid signal-On detection of small hapten methotrexate. ACS Sens 5:3457–3464

    Article  CAS  PubMed  Google Scholar 

  26. Zhao SS, Bichelberger MA, Colin DY et al (2012) Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor. Analyst 137:4742–4750

    Article  CAS  PubMed  Google Scholar 

  27. Song ZR, Wang YF, Dong YQ et al (2016) A validated chemiluminescence immunoassay for methotrexate (MTX) and its application in a pharmacokinetic study. Anal Methods 8:162–170

    Article  CAS  Google Scholar 

  28. Chen M, Luo W, Zhang ZM et al (2017) Synthesis of multi-Au nanoparticles-embedded mesoporous silica microspheres as self-filtering and reusable substrates for SERS detection. ACS Appl Mater Interfaces 9:42156–42166

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Tan XB, Shih W-C et al (2014) A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid / methotrexate. Biomed Microdevices 16:673–679

    Article  CAS  PubMed  Google Scholar 

  30. Subaihi A, Trivedi DK, Hollywood KA et al (2017) Quantitative online liquid chromatography-surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. Anal Chem 89:6702–6709

    Article  CAS  PubMed  Google Scholar 

  31. Jandagh N, Jahani S, Foroughi MM et al (2020) Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate. Microchim Acta 187:24

    Article  Google Scholar 

  32. Goksel Y, Dumont E, Slipets R et al (2022) Methotrexate detection in serum at clinically relevant levels with electrochemically assisted SERS on a benchtop, custom built Raman spectrometer. ACS Sens 7:2358–2369

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (21964023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifeng Fu or Yong He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhang, Y., Xue, J. et al. Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range. Microchim Acta 190, 342 (2023). https://doi.org/10.1007/s00604-023-05917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05917-6

Keywords

Navigation