Skip to main content
Log in

Ultrasensitive levofloxacin electrochemical biosensor based on semiconducting covalent organic framework/poly-L-cysteine/triangular Ag nanoplates modified glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical biosensor with excellent performance was fabricated for levofloxacin (LEV) detection, which adopted triangular Ag nanoplates (Tri-AgNP) confined in a poly-L-cysteine (poly-L-Cys) film and a semiconducting covalent organic framework (COF) as the electrochemical sensing material. The developed electrochemical sensor revealed excellent analytical properties because of its good electrical conductivity, fast electron transfer, and abundant bioactive site. Based on this, a linear relationship between the LEV concentration and the peak current response at 0.92 V was obtained under the optimal experimental conditions by differential pulse voltammetry (DPV), with a wide linear range of 0.05 to 600 μM and a low limit of detection (LOD) of 0.0061 μM. The prepared sensor also realized sensitive and accurate determination of LEV in human serum and urine samples by standard addition method, with satisfactory recoveries (97.1 to 104%) and a low relative standard deviation of less than 4.6%. These results indicated that the novel ternary system has a promising application in the development of electrochemical signal probe and electrochemical biosensing platform.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Joshi A, Kim KH (2020) Recent advances in nanomaterial-based electrochemical detection of antibiotics: challenges and future perspectives. Biosens Bioelectron 153:112046. https://doi.org/10.1016/j.bios.2020.112046

    Article  CAS  PubMed  Google Scholar 

  2. Tang L, Tong Y, Zheng RF, Liu WL, Gu Y, Li C, Chen RX, Zhang ZQ (2014) Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sens Actuators B-Chem 203:95–101. https://doi.org/10.1016/j.snb.2014.06.089

    Article  CAS  Google Scholar 

  3. Sanjay T, Sharma K, Hwa KY (2021) Facile Synthesis of Ag/AgVO3/N-rGO hybrid nanocomposites for electrochemical detection of levofloxacin for complex biological samples using screen-printed carbon paste electrodes. Inorg Chem 60:6585–6599. https://doi.org/10.1021/acs.inorgchem.1c00389

    Article  CAS  Google Scholar 

  4. Jin YF, Xu GR, Li XB, Ma JJ, Yang L, Li YC, Zhang H, Zhang Z, Yao DH, Li DH (2021) Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin. J Alloy Compd 851:156823. https://doi.org/10.1016/j.jallcom.2020.156823

    Article  CAS  Google Scholar 

  5. Rudnicki K, Sipa K, Brycht M, Borgul P, Skrzypek S, Poltorak L (2020) Electrochemical sensing of fluoroquinolone antibiotics. Trends Anal Chem 128:115907. https://doi.org/10.1016/j.trac.2020.115907

    Article  CAS  Google Scholar 

  6. Nataraj N, Kubendhiran S, Gan ZW, Chen SM, Sakthivel R (2022) HMTA-assisted synthesis of praseodymium oxide nanostructures integrated multiwalled carbon nanotubes for efficient levofloxacin electrochemical sensing. Mater Today Chem 26:101136. https://doi.org/10.1016/j.mtchem.2022.101136

    Article  CAS  Google Scholar 

  7. Faria AF, Souza MV, Almeida MV, Oliveira MA (2006) Simultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis. Anal Chim Acta 579:185–192. https://doi.org/10.1016/j.aca.2006.07.037

    Article  CAS  PubMed  Google Scholar 

  8. Zhu ZY, Bai X, Ji YT (2023) A fuel-free self-powered sensor based on photoelectrochemical water/oxygen circulation for ultra-selective detection of levofloxacin. Sens Actuators B-Chem 15:133076. https://doi.org/10.1016/j.snb.2022.133076

    Article  CAS  Google Scholar 

  9. Han L, Zhao YF, Chang C, Li F (2018) A novel electrochemical sensor based on poly(p-aminobenzene sulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine. J Electroanal Chem 817:141–148. https://doi.org/10.1016/j.jelechem.2018.04.008

    Article  CAS  Google Scholar 

  10. Szerkus O, Jacyna J, Wiczling P, Gibas A, Sieczkowski M, Siluk D, Matuszewski M, Kaliszan R, Markuszewski M (2016) Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J Chromatogr B 1029:48–59. https://doi.org/10.1016/j.jchromb.2016.06.051

    Article  CAS  Google Scholar 

  11. Wang JM, Lian X, Yan B (2019) Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg Chem 58:9956–9963. https://doi.org/10.1021/acs.inorgchem.9b01106

    Article  CAS  PubMed  Google Scholar 

  12. Salem A, Mossa H, Barsoum B (2005) Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy. Spectrochim Acta A 62:466–472. https://doi.org/10.1016/j.saa.2005.01.016

    Article  CAS  Google Scholar 

  13. Momani IA (2006) Flow injection spectrophotometric determination of the antibacterial levofloxacin in tablets and human urine. Anal Lett 39:741–750. https://doi.org/10.1080/00032710600611186

    Article  CAS  Google Scholar 

  14. Wu Y, Yan DW, Zhang ZY, Matsushita MM, Awaga K (2019) Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl Mater Interfaces 11:7661–7665. https://doi.org/10.1021/acsami.8b21696

    Article  CAS  PubMed  Google Scholar 

  15. Keller N, Bein T (2021) Optoelectronic processes in covalent organic frameworks. Chem Soc Rev 50:1813–1845. https://doi.org/10.1039/D0CS00793E

    Article  CAS  PubMed  Google Scholar 

  16. Ding H, Li J, Xie G, Lin G, Chen R, Peng Z, Yang C, Wang B, Sun J, Wang C (2018) An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat Commun 9:5234. https://doi.org/10.1038/s41467-018-07670-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Xu X, Yue Y, Yu K, Shui Q, Huang N, Chen H (2020) Semiconductive covalent organic frameworks: Structural design, synthesis, and application. Small Struct 1:2000021. https://doi.org/10.1002/sstr.202000021

    Article  Google Scholar 

  18. Huang N, Krishna R, Jiang D (2015) Tailor-made pore surface engineering in covalent organic frameworks: Systematic functionalization for performance screening. J Am Chem Soc 137:7079–7082. https://doi.org/10.1021/jacs.5b04300

    Article  CAS  PubMed  Google Scholar 

  19. Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J (2018) Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J Am Chem Soc 140:10094–10098. https://doi.org/10.1021/jacs.8b05136

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Pan Q, Ma Y, Guan X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S (2016) Three-dimensional covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J Am Chem Soc 138:14783–14788. https://doi.org/10.1021/jacs.6b09563

    Article  CAS  PubMed  Google Scholar 

  21. Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y (2017) Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J Am Chem Soc 139:8693–8697. https://doi.org/10.1021/jacs.7b04008

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, He L, Ma F, Liu W, Wang Y, Silver MA, Chen L, Zhu L, Gui D, Diwu J, Chai Z, Wang S (2018) Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor. ACS Appl Mater Interfaces 10:15364–15368. https://doi.org/10.1021/acsami.8b05484

    Article  CAS  PubMed  Google Scholar 

  23. Sun Q, Aguila B, Perman J, Earl LD, Abney CW, Cheng Y, Wei H, Nguyen N, Wojtas L, Ma S (2017) Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139:2786–2793. https://doi.org/10.1021/acsami.8b05484

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Huang N, Lee KH, Feng Y, Tao S, Jiang Q, Nagao Y, Irle S, Jiang D (2018) Light-emitting covalent organic frameworks: Fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J Am Chem Soc 140:12374–12377. https://doi.org/10.1021/jacs.8b08380

    Article  CAS  PubMed  Google Scholar 

  25. Xu F, Yang S, Chen X, Liu Q, Li H, Wang H, Wei B, Jiang D (2019) Energy-storage covalent organic frameworks: improving performance via engineering polysulfide chains on walls. Chem Sci 10:6001–6006. https://doi.org/10.1039/C8SC04518F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandal AK, Mahmood J, Baek JB (2017) Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 3:373–391. https://doi.org/10.1002/cnma.201700048

    Article  CAS  Google Scholar 

  27. DeBlase CR, Silberstein KE, Truong TT, Abruña HD, Dichtel WR (2013) β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J Am Chem Soc 135:16821–16824. https://doi.org/10.1021/ja409421d

    Article  CAS  PubMed  Google Scholar 

  28. Xie ZC, Sun PP, Wang Z, Li HG, Yu LY, Sun D, Chen MJ, Bi YT, Xin X, Hao JC (2020) Metal–organic gels from silver nanoclusters with aggregation induced emission and fluorescence-to-phosphorescence switching. Angew Chem Int Ed 59:9922–9927. https://doi.org/10.1002/anie.201912201

    Article  CAS  Google Scholar 

  29. Ricciardulli AG, Yang S, Wetzelaer GAH, Feng X, Blom PWM (2018) Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv Funct Mater 28:1706010. https://doi.org/10.1002/adfm.201706010

    Article  CAS  Google Scholar 

  30. Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo JL (2017) Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J Am Chem Soc 139:2160–2163. https://doi.org/10.1021/jacs.6b12103

    Article  CAS  PubMed  Google Scholar 

  31. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. https://doi.org/10.1126/science.1077229

    Article  CAS  PubMed  Google Scholar 

  32. Xia X, Zeng J, McDearmon B, Zheng Y, Li Q, Xia Y (2011) Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties. Angew Chem Int Ed 50:12542–12546. https://doi.org/10.1002/anie.201105200

    Article  CAS  Google Scholar 

  33. Ghanbari MH, Mashhadizadeh MH, Norouzi Z, Salehzadeh H (2022) Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform. Microchem J 175:107213. https://doi.org/10.1016/j.microc.2022.107213

    Article  CAS  Google Scholar 

  34. Shi RJ, Liu LJ, Lu Y, Wang CC, Li YX, Li L, Yan ZH, Chen J (2020) Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat Commun 11:178. https://doi.org/10.1038/s41467-019-13739-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393. https://doi.org/10.1016/S0022-0728(74)80448-1

    Article  CAS  Google Scholar 

  36. Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanalysis 25:2092–2099. https://doi.org/10.1002/elan.201300261

    Article  CAS  Google Scholar 

  37. Cesarino V, Cesarino I, Moraes FC, Machado SAS, Mascaro LH (2014) Carbon nanotubes modified with SnO2 rods for levofloxacin detection. J Braz Chem Soc 25:502–508. https://doi.org/10.5935/0103-5053.20140017

    Article  CAS  Google Scholar 

  38. Khodari M, Hassan N, Mohamed A, Rashed MN (2023) Electrocatalytic determination of the antibiotic levofloxacin using modified carbon paste electrode with a poly-murexide thin film voltammetrically. Electroanalysis 35:e20220043. https://doi.org/10.1002/elan.202200431

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21665024), the Natural Science Foundation of Gansu Province (20JR10RA083), and the Northwest Normal University Young Teachers Research Capacity Promotion Plan (NWNU-LKQN-18-23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Guo or Wu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Guo, H., Liu, B. et al. Ultrasensitive levofloxacin electrochemical biosensor based on semiconducting covalent organic framework/poly-L-cysteine/triangular Ag nanoplates modified glassy carbon electrode. Microchim Acta 190, 346 (2023). https://doi.org/10.1007/s00604-023-05866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05866-0

Keywords

Navigation