Skip to main content
Log in

Signal-amplified electrochemiluminescence aptasensor for mucin 1 determination using CdS QDs/g-C3N4 and Au NPs@TEOA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemiluminescence (ECL) aptasensor, using graphite carbonitride (g-C3N4) capped CdS quantum dots (CdS QDs@g-C3N4) and Au nanoparticles decorated triethanolamine (AuNPs@TEOA) as dual coreactants, was proposed for the determination of mucin 1 (MUC1). Higher ECL efficiency was acquired due to the double enhancement contribution of CdS QDs and TEOA to Ru (bpy)32+ ECL. Additionally, AuNPs@TEOA also acted as nanocarrier for MUC1 aptamer immobilization. After the aptasensor was incubated in target MUC1, the decreased ECL emission was obtained because of the poor conductivity of MUC1. The ECL aptasensor displayed a good linear correlation for MUC1 in the range 0.1 pg mL−1 -1000 ng mL−1, and the detection limit was 33 fg mL−1. MUC1 spiked into human serum samples was quantified to assess the practicability of the ECL aptasensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li LL, Chen Y, Zhu JJ (2017) Recent advances in electrochemiluminescence analysis. Anal Chem 89:358–371

    CAS  PubMed  Google Scholar 

  2. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    CAS  PubMed  Google Scholar 

  3. Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A (2018) Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 367:65–81

    CAS  Google Scholar 

  4. Li WP, Li M, Ge SG, Yan M, Huang JD, Yu JH (2013) Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal Chim Acta 767:66–74

    CAS  PubMed  Google Scholar 

  5. Lan LY, Yao Y, Ping JF, Ying YB (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    CAS  PubMed  Google Scholar 

  6. Feng XB, Gan N, Lin SC, Li TH, Cao YT, Hu FT, Jiang QL, Chen YJ (2016) Ratiometric electrochemiluminescent aptasensor array for antibiotic based on internal standard method and spatial-resolved technique. Sens Actuators B Chem 226:305–311

    CAS  Google Scholar 

  7. Wei H, Wang E (2008) Solid-state electrochemiluminescence of tris(2,2’-bipyridyl) ruthenium. Trends Anal Chem 27(5):447–459

    CAS  Google Scholar 

  8. Li XY, Tan XC, Yan J, Hu Q, Wu JW, Zhang H, Chen X (2016) A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru (bpy)32+-doped silica nanocomposite modified electrode. Electrochim Acta 187:433–441

    CAS  Google Scholar 

  9. Wang HJ, Yuan YL, Chai YQ, Yuan R (2015) Self-enhanced electrochemiluminescence immunosensor based on nanowires obtained by a green approach. Biosens Bioelectron 68:72–77

    CAS  PubMed  Google Scholar 

  10. Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR (2009) Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 131:6088–6089

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong YP, Gao TT, Zhou Y, Jiang LP, Zhu JJ (2015) Anodic electrogenerated chemiluminescence of Ru(bpy)32+ with CdSe quantum dots as coreactant and its application in quantitative detection of DNA. Sci Rep 5:15392–15401

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou LM, Huang JS, Yu B, You TY (2016) A novel self-enhanced electrochemiluminescence immunosensor based on hollow Ru-SiO2@PEI nanoparticles for NSE analysis. Sci Rep 6:22234–22242

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Long YM, Bao L, Zhao JY, Zhang ZL, Pang DW (2014) Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+. Anal Chem 86(15):7224–7228

    CAS  PubMed  Google Scholar 

  14. Qin X, Gu C, Wang M, Dong Y, Nie X, Li M, Zhu Z, Di Y, Shao Y (2018) Triethanolamine-modified gold nanoparticles synthesized by a one-pot method and their application in electrochemiluminescent immunoassy. Anal Chem 90(4):2826–2832

    CAS  PubMed  Google Scholar 

  15. Zhou Z, Shang Q, Shen Y, Zhang L, Zhang Y, Lv Y, Li Y, Liu S, Zhang Y (2016) Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions. Anal Chem 88(11):6004–6010

    CAS  PubMed  Google Scholar 

  16. Cao N, Zhao FQ, Zeng BZ (2020) A novel self-enhanced electrochemiluminescence sensor based on PEI-CdS/Au@SiO2@RuDS and molecularly imprinted polymer for the highly sensitive detection of creatinine. Sens Actuators B Chem 306:127591–127597

    CAS  Google Scholar 

  17. Li LB, Liu D, Mao HP, You TY (2017) Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens Bioelectron 89:489–495

    CAS  PubMed  Google Scholar 

  18. Xiong CY, Wang HJ, Yuan YL, Chai YQ, Yuan R (2015) A novel solid-state Ru(bpy)32+ electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta 131:192–197

    CAS  PubMed  Google Scholar 

  19. Yang ML, Yang XM, Wang ML, Jiang R (2017) A sensitive and selective electro chemiluminescent sensor for dopamine based on the inhibition of dual-stabilizer capped CdS quantum dot electrochemiluminescence. Anal Methods 9:2334–2341

    CAS  Google Scholar 

  20. Wang ML, Sun YN, Guo JY, Yang XM, Yang ML (2018) Amplifification effffect of CdS quantum dots on electrogenerated chemiluminescence of Ru(bpy)32+and its application in determination of catechol. Chin J Anal Chem 46:780–786

    CAS  Google Scholar 

  21. Dong GP, Zhang YH, Pan QW, Qiu JR (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photoch Photobio C 20:33–50

    CAS  Google Scholar 

  22. Yang YQ, Jin HF, Zhang C, Gan HH, Yi FT, Wang HQ (2020) Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance. J Alloys Compd 821:153439

    CAS  Google Scholar 

  23. Xiang QJ, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363

    CAS  Google Scholar 

  24. Ma F, Ho C, Cheng AKH, Yu HZ (2013) Immobilization of redox-labeled hairpin DNA aptamers on gold: electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim Acta 110:139–145

    CAS  Google Scholar 

  25. Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60

    CAS  PubMed  Google Scholar 

  26. Li R, An Y, Jin TY, Zhang F, He PG (2021) Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. J Electroanal Chem 882:115011

    CAS  Google Scholar 

  27. Jiang XY, Wang HJ, Shen Y, Hu NN, Shi WB (2022) Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens Actuators B Chem 350:130891

    CAS  Google Scholar 

  28. Liang ZH, Liua Y, Zhang Q, Guo YP, Ma Q (2020) The high luminescent polydopamine nanosphere-based ECL biosensor with steric effect for MUC1 detection. Chem Eng J 385:123825

    CAS  Google Scholar 

  29. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    CAS  PubMed  Google Scholar 

  30. Cao SW, Yuan YP, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly effificient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266

    CAS  Google Scholar 

  31. Qin X, Xu A, Wang L, Liu L, Chao L, He F, Tan Y, Chen C, Xie Q (2016) In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins. Biosens Bioelectron 79:914–921

    CAS  PubMed  Google Scholar 

  32. Chu J, Li X, Qi J (2012) Hydrothermal synthesis of CdS microparticlesegraphene hybrid and its optical properties. CrystEngComm 14:1881

    CAS  Google Scholar 

  33. Colvin VL, Goldstein AN, Alivisatos AP (1992) Semiconductor nanocrystals covalently bound to metal surfaces with selfassembled monolayers. J Am Chem Soc 114:5221–5230

    CAS  Google Scholar 

  34. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y, Yao S (2015) Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chem Commun 51:7164–7167

    CAS  Google Scholar 

  35. Liu Q, Yang Y, Liu XP, Wei YP, Mao CJ, Chen JS, Niu HL, Song JM, Zhang SY, Jin BK, Jiang M (2017) A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. Sens Actuators B Chem 242:1073–1078

    CAS  Google Scholar 

  36. Wang WW, Wang Y, Pan H, Cheddah S, Yan C (2019) Aptamer-based fluorometric determination for mucin 1 using gold nanoparticles and carbon dots. Microchim Acta 186:544

    CAS  Google Scholar 

  37. Si HB, Wang LJ, Li QL, Li XX, Li L, Tang B (2018) In situ fluorescence monitoring of diagnosis and treatment: a versatile nanoprobe combining tumor targeting based on MUC1 and controllable DOX release by telomerase. Chem Commun 54:8277–8280

    CAS  Google Scholar 

  38. Hatami Z, Jalali F, Tabrizi MA, Shamsipur M (2019) Application of metal-organic framework as redox probe in an electrochemical aptasensor for sensitive detection of MUC1. Biosen Bioelectron 141:111433

    CAS  Google Scholar 

  39. Zheng JX, Peng XL, Wang YJ, Bao T, Wen W, Zhang XH, Wang SF (2019) An exonuclease-assisted triple-amplifified electrochemical aptasensor for mucin 1 detection based on strand displacement reaction and enzyme catalytic strategy. Anal Chim Acta 1086:75–81

    CAS  PubMed  Google Scholar 

  40. Gao JW, Chen MM, Wen W, Zhang XH, Wang SF, Huang WH (2019) Au-Luminoldecorated porous carbon nanospheres for the electrochemiluminescence biosensing of MUC1. Nanoscale 36:16860–16867

    Google Scholar 

  41. Yang F, Jiang X, Zhong X, Wei S, Yuan R (2018) Highly sensitive electrochemiluminescence detection of mucin1 based on V2O5 nanospheres as peroxidase mimetics to catalyze H2O2 for signal amplification. Sens Actuators B Chem 265:126–133

    CAS  Google Scholar 

  42. Jiang X, Wang H, Wang H, Zhuo Y, Yuan R, Chai Y (2017) Electrochemiluminescence biosensor based on 3-D DNA nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive mucin 1 detection. Anal Chem 89:4280–4286

    CAS  PubMed  Google Scholar 

  43. Jiang X, Wang H, Wang H, Yuan R, Chai Y (2016) Signal-switchable electrochemiluminescence system coupled with target recycling amplification strategy for sensitive mercury ion and mucin 1 assay. Anal Chem 88:9243–9250

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 22104030), Natural Science Foundation of Henan (No 222300420426) and the Innovative Funds Plan of Henan University of Technology (No. 2022ZKCJ08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Liu, Z., Fan, Y. et al. Signal-amplified electrochemiluminescence aptasensor for mucin 1 determination using CdS QDs/g-C3N4 and Au NPs@TEOA. Microchim Acta 190, 304 (2023). https://doi.org/10.1007/s00604-023-05864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05864-2

Keywords

Navigation