Skip to main content

Advertisement

Log in

Synthesis of nanoparticles via microfluidic devices and integrated applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. https://doi.org/10.1039/b502142c

    Article  CAS  PubMed  Google Scholar 

  2. Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YLN (2019) Review on nanomaterials: synthesis and applications. Mater Today: Proceed 18:2182–2190. https://doi.org/10.1016/j.matpr.2019.07.371

    Article  Google Scholar 

  3. Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. https://doi.org/10.1016/j.ccr.2005.01.030

    Article  CAS  Google Scholar 

  4. Nieto-Márquez A, Romero R, Romero A, Valverde JL (2011) Carbon nanospheres: synthesis, physicochemical properties and applications. J Mater Chem 21:1664–1672. https://doi.org/10.1039/c0jm01350a

    Article  CAS  Google Scholar 

  5. Eswaraiah V, Zeng Q, Long Y, Liu Z (2016) Black phosphorus nanosheets: synthesis, characterization and applications. Small 12:3480–3502. https://doi.org/10.1002/smll.201600032

    Article  CAS  PubMed  Google Scholar 

  6. Lu J, Zhang D, Chen Q, Shang Z, Huang J, Liang P (2022) Nanoparticles/parabolic nanobowl hybrid structure as a surface-enhanced Raman scattering substrate: insights using the FDTD method. J Phys Chem C 126:14211–14218. https://doi.org/10.1021/acs.jpcc.2c04250

    Article  CAS  Google Scholar 

  7. Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Understanding nano effects in catalysis. Natl Sci Rev 2:183–201. https://doi.org/10.1093/nsr/nwv024

    Article  CAS  Google Scholar 

  8. Awual MR, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM, Khaleque MA (2018) Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chem Eng J 343:118–127. https://doi.org/10.1016/j.cej.2018.02.11

    Article  CAS  Google Scholar 

  9. Manna TK, Mahajan SM (2007) Int Conf Clean Electr Power 2007:379–386

    Google Scholar 

  10. Bellah MM, Christensen SM, Iqbal SM (2012) Nanostructures for medical diagnostics. J Nanomater 2012:1–21. https://doi.org/10.1155/2012/486301

    Article  CAS  Google Scholar 

  11. Kumar S, Bhushan P, Bhattacharya S (2018) In Fabrication of nanostructures with bottom-up approach and their utility in diagnostics, therapeutics, and others (pp 167–198). https://doi.org/10.1007/978-981-10-7751-7_8

  12. Kumar S, Dubey AK, Pandey AK (2013) Computer-aided genetic algorithm based multi-objective optimization of laser trepan drilling. Int J Precis Eng Manuf 14:1119–1125. https://doi.org/10.1007/s12541-013-0152-5

    Article  Google Scholar 

  13. Mijatovic D, Eijkel JC, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up–a review. Lab Chip 5:492–500. https://doi.org/10.1039/b416951d

    Article  CAS  PubMed  Google Scholar 

  14. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 170:2–27. https://doi.org/10.1016/j.cis.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  15. DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402. https://doi.org/10.1038/nature05062

    Article  CAS  PubMed  Google Scholar 

  16. Han Z, Jiang X (2020) Microfluidic synthesis of functional nanoparticles. Nanotechnology Microfluidics 319–345. https://doi.org/10.1002/9783527818341.ch10

  17. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026. https://doi.org/10.1103/RevModPhys.77.977

    Article  CAS  Google Scholar 

  18. Hartman RL, Jensen KF (2009) Microchemical systems for continuous-flow synthesis. Lab on a Chip 9:2495–2507. https://doi.org/10.1039/b906343a

  19. Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215. https://doi.org/10.1039/A902237F

    Article  CAS  Google Scholar 

  20. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651. https://doi.org/10.1126/science.1066238

    Article  CAS  PubMed  Google Scholar 

  21. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655. https://doi.org/10.1038/nature04163

    Article  CAS  PubMed  Google Scholar 

  22. Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74:45–51. https://doi.org/10.1021/ac010895d

    Article  CAS  PubMed  Google Scholar 

  23. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848

    Article  CAS  PubMed  Google Scholar 

  24. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–1886. https://doi.org/10.1109/T-ED.1979.19791

    Article  Google Scholar 

  25. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens Actuators, B Chem 1:249–255. https://doi.org/10.1016/0925-4005(90)80210-Q

    Article  CAS  Google Scholar 

  26. Shoji S, Esashi M, Matsuo T (1988) Prototype miniature blood gas analyser fabricated on a silicon wafer. Sensors Actuators 14:101–107. https://doi.org/10.1016/0250-6874(88)80057-X

    Article  CAS  Google Scholar 

  27. Pinho B, Hartman RL (2017) Microfluidics with in situ Raman spectroscopy for the characterization of non-polar/aqueous interfaces. React Chem Eng 2:189–200. https://doi.org/10.1039/c6re00177g

    Article  CAS  Google Scholar 

  28. Baek J, Shen Y, Lignos I, Bawendi MG, Jensen KF (2018) Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew Chem Int Ed Engl 57:10915–10918. https://doi.org/10.1002/anie.201805264

    Article  CAS  PubMed  Google Scholar 

  29. Xing Y, Dittrich PS (2018) One-dimensional nanostructures: microfluidic-based synthesis, alignment and integration towards functional sensing devices. Sensors 18:134. https://doi.org/10.3390/s18010134

  30. Ahmadi F, Samlali K, Vo PQN, Shih SCC (2019) An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab Chip 19:524–535. https://doi.org/10.1039/c8lc01170b

    Article  CAS  PubMed  Google Scholar 

  31. Lamanna J, Scott EY, Edwards HS, Chamberlain MD, Dryden MDM, Peng J, Mair B, Lee A, Chan C, Sklavounos AA, Heffernan A, Abbas F, Lam C, Olson ME, Moffat J, Wheeler AR (2020) Digital microfluidic isolation of single cells for -Omics. Nat Commun 11:5632. https://doi.org/10.1038/s41467-020-19394-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19:447–456. https://doi.org/10.1007/s10404-015-1571-7

    Article  CAS  Google Scholar 

  33. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. https://doi.org/10.1021/ac980656z

    Article  CAS  PubMed  Google Scholar 

  34. He B, Tait N, Regnier F (1998) Fabrication of nanocolumns for liquid chromatography. Anal Chem 70:3790–3797. https://doi.org/10.1021/ac980028h

    Article  CAS  PubMed  Google Scholar 

  35. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. https://doi.org/10.1126/science.1076996

    Article  CAS  PubMed  Google Scholar 

  36. Balachandran YL, Li X, Jiang X (2021) Integrated microfluidic synthesis of aptamer functionalized biozeolitic imidazolate framework (BioZIF-8) targeting lymph node and tumor. Nano Lett 21:1335–1344. https://doi.org/10.1021/acs.nanolett.0c04053

    Article  CAS  PubMed  Google Scholar 

  37. Kaspar O, Koyuncu AH, Pittermannova A, Ulbrich P, Tokarova V (2019) Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device. Biomed Microdevices 21:88. https://doi.org/10.1007/s10544-019-0435-4

    Article  CAS  PubMed  Google Scholar 

  38. Hong T, Lu A, Liu W, Chen C (2019) Microdroplet synthesis of silver nanoparticles with controlled sizes. Micromachines 10(4):274. https://doi.org/10.3390/mi10040274

  39. Kimura N, Maeki M, Sato Y, Note Y, Ishida A, Tani H, Harashima H, Tokeshi M (2018) Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 3:5044–5051. https://doi.org/10.1021/acsomega.8b00341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Seidel M (2021) Strategy for fast manufacturing of 3D hydrodynamic focusing multilayer microfluidic chips and its application for flow-based synthesis of gold nanoparticles. Microfluidics Nanofluidics 25:1–10. https://doi.org/10.1007/s10404-021-02463-6

  41. Tang SY, Qiao R, Yan S, Yuan D, Zhao Q, Yun G, Davis TP, Li W (2018) Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small 14(21):1800118. https://doi.org/10.1002/smll.201800118

  42. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. https://doi.org/10.1038/nmat2608

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  44. Wu MX, Yang YW (2017) Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 29(23):1606314. https://doi.org/10.1002/adma.201606134

  45. Sun J, Xianyu Y, Li M, Liu W, Zhang L, Liu D, Liu C, Hu G, Jiang X (2013) A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale 5:5262–5265. https://doi.org/10.1039/c3nr01289a

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Zha M, Li Y, Ni JS, Min T, Kang T, Yang G, Tang H, Li K, Jiang X (2020) Sub-10 nm aggregation-induced emission quantum dots assembled by microfluidics for enhanced tumor targeting and reduced retention in the liver. Angew Chem Int Ed Engl 59:21899–21903. https://doi.org/10.1002/anie.202008564

    Article  CAS  PubMed  Google Scholar 

  47. Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138:704–717. https://doi.org/10.1021/jacs.5b09974

    Article  CAS  PubMed  Google Scholar 

  48. Pearce TR, Shroff K, Kokkoli E (2012) Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater 24(3803–3822):3710. https://doi.org/10.1002/adma.201200832

    Article  CAS  PubMed  Google Scholar 

  49. Wagner J, Kohler JM (2005) Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett 5:685–691. https://doi.org/10.1021/nl050097t

    Article  CAS  PubMed  Google Scholar 

  50. Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R (2011) Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 23:H79-83. https://doi.org/10.1002/adma.201004333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chrimes AF, Khoshmanesh K, Tang SY, Wood BR, Stoddart PR, Collins SS, Mitchell A, Kalantar-zadeh K (2013) In situ SERS probing of nano-silver coated individual yeast cells. Biosens Bioelectron 49:536–541. https://doi.org/10.1016/j.bios.2013.05.053

    Article  CAS  PubMed  Google Scholar 

  52. Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125. https://doi.org/10.1002/smll.200901459

    Article  CAS  PubMed  Google Scholar 

  53. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. https://doi.org/10.1126/science.1109164

    Article  CAS  PubMed  Google Scholar 

  54. Mukhopadhyay R (2007) In when PDMS isn’t the best, ACS Publications, pp 3248–3253

  55. Bandulasena MV, Vladisavljević GT, Benyahia B (2019) Droplet-based microfluidic method for robust preparation of gold nanoparticles in axisymmetric flow focusing device. Chem Eng Sci 195:657–664. https://doi.org/10.1016/j.ces.2018.10.010

    Article  CAS  Google Scholar 

  56. Roger K, El Amri N (2022) Controlling nanoparticle formation from the onset of nucleation through a multi-step continuous flow approach. J Colloid Interface Sci 608:1750–1757. https://doi.org/10.1016/j.jcis.2021.10.071

    Article  CAS  PubMed  Google Scholar 

  57. Yu W, Chen H, Wu H, Lin P, Xu H, Xie Q, Shi K, Xie G, Chen Y (2022) Continuous-flow rapid synthesis of wavelength-tunable luminescent lanthanide metal-organic framework nanorods by a microfluidic reactor. J Alloys Compd 890:161860. https://doi.org/10.1016/j.jallcom.2021.161860

    Article  CAS  Google Scholar 

  58. Besenhard MO, LaGrow AP, Hodzic A, Kriechbaum M, Panariello L, Bais G, Loizou K, Damilos S, Cruz MM, Thanh NTK (2020) Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: new insights and continuous production via flow chemistry. Chem Eng J 399:125. https://doi.org/10.1016/j.cej.2020.125740

    Article  CAS  Google Scholar 

  59. Zheng L, Zhang D, Wang X, Guo G (2021) Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material. Appl Mater Today 23:101032. https://doi.org/10.1016/j.apmt.2021.101032

    Article  Google Scholar 

  60. Mahdavi Z, Rezvani H, Keshavarz Moraveji M (2020) Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv 10:18280–18295. https://doi.org/10.1039/d0ra01032d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tottori N, Nisisako T (2018) High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device. Sens Actuators, B Chem 260:918–926. https://doi.org/10.1016/j.snb.2018.01.112

    Article  CAS  Google Scholar 

  62. Song Y, Hormes J, Kumar CS (2008) Microfluidic synthesis of nanomaterials. Small 4:698–711. https://doi.org/10.1002/smll.200701029

    Article  CAS  PubMed  Google Scholar 

  63. Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM (2021) Nanomaterials synthesis through microfluidic methods: an updated overview. Nanomaterials 11:864. https://doi.org/10.3390/nano11040864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pekkari A, Say Z, Susarrey-Arce A, Langhammer C, Harelind H, Sebastian V, Moth-Poulsen K (2019) Continuous microfluidic synthesis of Pd nanocubes and PdPt core-shell nanoparticles and their catalysis of NO2 reduction. ACS Appl Mater Interfaces 11:36196–36204. https://doi.org/10.1021/acsami.9b09701

    Article  CAS  PubMed  Google Scholar 

  65. Aghaei H, Solaimany Nazar AR (2019) Continuous production of the nanoscale liposome in a double flow-focusing microfluidic device. Ind Eng Chem Res 58:23032–23045. https://doi.org/10.1021/acs.iecr.9b04079

    Article  CAS  Google Scholar 

  66. Chen Z, Han JY, Shumate L, Fedak R, DeVoe DL (2019) High throughput nanoliposome formation using 3D printed microfluidic flow focusing chips. Adv Mater Technol 4:1800511. https://doi.org/10.1002/admt.201800511

    Article  CAS  Google Scholar 

  67. Yolchinyan SA, Hobosyan MA, Martirosyan KS (2018) Tailoring bismuth oxide flower-, bowtie- and brushwood-like structures through microfluidic synthesis. Mater Chem Phys 207:330–336. https://doi.org/10.1016/j.matchemphys.2017.12.073

    Article  CAS  Google Scholar 

  68. Xing W, Zhang S, An R, Bi W, Geng C, Xu S (2021) Low-temperature synthesis of tetrapod CdSe/CdS quantum dots through a microfluidic reactor. Nanoscale 13:19474–19483. https://doi.org/10.1039/d1nr04070g

    Article  CAS  PubMed  Google Scholar 

  69. Epps RW, Felton KC, Coley CW, Abolhasani M (2017) Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing. Lab Chip 17:4040–4047. https://doi.org/10.1039/c7lc00884h

    Article  CAS  PubMed  Google Scholar 

  70. Gimondi S, Guimaraes CF, Vieira SF, Goncalves VMF, Tiritan ME, Reis RL, Ferreira H, Neves NM (2022) Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Nanomedicine 40:102482. https://doi.org/10.1016/j.nano.2021.102482

    Article  CAS  PubMed  Google Scholar 

  71. Kassab LRP, De Araujo CB (2018) Metal nanostructures for photonics. Elsevier

    Google Scholar 

  72. Puente C, Sánchez-Domínguez M, Brosseau CL, Israel L (2021) Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): effect of nanoparticle morphology on SERS performance. Mater Chem Phys 260:124107. https://doi.org/10.1016/j.matchemphys.2020.124107

    Article  CAS  Google Scholar 

  73. LeeáTan K (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11:2378–2381. https://doi.org/10.1039/B100618P

    Article  Google Scholar 

  74. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 48:60–103. https://doi.org/10.1002/anie.200802248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Li S, Yao F, Xu W, Li Y, Chen Q, Liang P (2023) Rapid fabrication of homogeneous submicron silver particles via a microfluidic chip and use as a SERS detection substrate. Chemosensors 11:232

    Article  CAS  Google Scholar 

  76. Ochoa-Vazquez G, Kharisov B, Arizmendi-Morquecho A, Cario A, Aymonier C, Marre S, Lopez I (2022) Continuous segmented-flow synthesis of Ag and Au nanoparticles using a low cost microfluidic PTFE tubing reactor. IEEE Trans Nanobiosci 21:135–140. https://doi.org/10.1109/TNB.2021.3101189

    Article  Google Scholar 

  77. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. https://doi.org/10.1002/smll.200701295

    Article  CAS  Google Scholar 

  78. Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8:1237–1259. https://doi.org/10.1039/c5nr07681a

    Article  CAS  PubMed  Google Scholar 

  79. Semagina N, Kiwi-Minsker L (2009) Recent advances in the liquid-phase synthesis of metal nanostructures with controlled shape and size for catalysis. Catal Rev 51:147–217. https://doi.org/10.1080/01614940802480379

    Article  CAS  Google Scholar 

  80. Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2:2045–2053. https://doi.org/10.1039/c0nr00276c

    Article  CAS  PubMed  Google Scholar 

  81. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–2904. https://doi.org/10.1039/c2cs35319a

    Article  CAS  PubMed  Google Scholar 

  82. Xu S-L, Shen S-C, Wei Z-Y, Zhao S, Zuo L-J, Chen M-X, Wang L, Ding Y-W, Chen P, Chu S-Q (2020) A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res 13:2735–2740. https://doi.org/10.1007/s12274-020-2920-8

    Article  CAS  Google Scholar 

  83. Gao D, Li S, Song G, Zha P, Li C, Wei Q, Lv Y, Chen G (2018) One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res 11:2612–2624. https://doi.org/10.1007/s12274-017-1888-5

    Article  CAS  Google Scholar 

  84. Shi H, Song B, Chen R, Zhang Q, Hu G, Li J, Wang J, Meng X, Wang H, He Y (2021) Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles. Nano Res 15:248–254. https://doi.org/10.1007/s12274-021-3466-0

    Article  CAS  Google Scholar 

  85. Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel BA, Jamal A, Moon D (2020) Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 367:777–781. https://doi.org/10.1126/science.aav2412

    Article  CAS  PubMed  Google Scholar 

  86. Sun Q, Wang N, Fan Q, Zeng L, Mayoral A, Miao S, Yang R, Jiang Z, Zhou W, Zhang J, Zhang T, Xu J, Zhang P, Cheng J, Yang DC, Jia R, Li L, Zhang Q, Wang Y, Terasaki O, Yu J (2020) Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew Chem Int Ed Engl 59:19450–19459. https://doi.org/10.1002/anie.202003349

    Article  CAS  PubMed  Google Scholar 

  87. Wang D, Li Y (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060. https://doi.org/10.1002/adma.201003695

    Article  CAS  PubMed  Google Scholar 

  88. Kresge AC, Leonowicz M, Roth WJ, Vartuli J, Beck J (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  89. Wang H, Wu D, Li D, Niu Z, Chen Y, Tang D, Wu M, Cao J, Huang Y (2011) Fabrication of continuous highly ordered mesoporous silica nanofibre with core/sheath structure and its application as catalyst carrier. Nanoscale 3:3601–3604. https://doi.org/10.1039/C1NR10547G

    Article  CAS  PubMed  Google Scholar 

  90. Wang J, Zhang J, Asoo BY, Stucky GD (2003) Structure-selective synthesis of mesostructured/mesoporous silica nanofibers. J Am Chem Soc 125:13966–13967. https://doi.org/10.1021/ja036967v

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Tsung C-K, Hong W, Wu Y, Tang J, Stucky GD (2004) Synthesis of mesoporous silica nanofibers with controlled pore architectures. Chem Mater 16:5169–5181. https://doi.org/10.1021/cm049028q

    Article  CAS  Google Scholar 

  92. Lin GL, Tsai YH, Lin HP, Tang CY, Lin CY (2007) Synthesis of mesoporous silica helical fibers using a catanionic-neutral ternary surfactant in a highly dilute silica solution: biomimetic silicification. Langmuir 23:4115–4119. https://doi.org/10.1021/la070154t

    Article  CAS  PubMed  Google Scholar 

  93. Hao N, Nie Y, Zhang JXJ (2018) Microfluidic flow synthesis of functional mesoporous silica nanofibers with tunable aspect ratios. ACS Sustain Chem Eng 6:1522–1526. https://doi.org/10.1021/acssuschemeng.7b03527

    Article  CAS  Google Scholar 

  94. Wang J, Wang J, Feng L, Lin T (2015) Fluid mixing in droplet-based microfluidics with a serpentine microchannel. RSC Adv 5:104138–104144. https://doi.org/10.1039/C5RA21181F

    Article  CAS  Google Scholar 

  95. Kaspar O, Koyuncu AH, Hubatova-Vackova A, Balouch M, Tokarova V (2020) Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics. RSC Adv 10:15179–15189. https://doi.org/10.1039/d0ra02470h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh MK, Yang Y, Takoudis CG (2009) Synthesis of multifunctional multiferroic materials from metalorganics. Coord Chem Rev 253:2920–2934. https://doi.org/10.1016/j.ccr.2009.09.003

    Article  CAS  Google Scholar 

  97. Yuan D, Zeng J, Kristian N, Wang Y, Wang X (2009) Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem Commun 11:313–317. https://doi.org/10.1016/j.elecom.2008.11.041

    Article  CAS  Google Scholar 

  98. Lu Y, Zhao Y, Zhao J, Song Y, Huang Z, Gao F, Li N, Li Y (2015) Induced aqueous synthesis of metastable β-Bi2O3 microcrystals for visible-light photocatalyst study. Cryst Growth Des 15:1031–1042. https://doi.org/10.1021/cg500792v

    Article  CAS  Google Scholar 

  99. Azad A, Larose S, Akbar S (1994) Bismuth oxide-based solid electrolytes for fuel cells. J Mater Sci 29:4135–4151. https://doi.org/10.1007/BF00414192

    Article  CAS  Google Scholar 

  100. Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345. https://doi.org/10.3390/ma3042260

    Article  CAS  PubMed Central  Google Scholar 

  101. Wang Z, Yuan F, Li X, Li Y, Zhong H, Fan L, Yang S (2017) 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-Light-Emitting diodes. Adv Mater 29:1702910. https://doi.org/10.1002/adma.201702910

    Article  CAS  Google Scholar 

  102. Hou L, Zhang Q, Ling L, Li CX, Chen L, Chen S (2013) Interfacial fabrication of single-crystalline ZnTe nanorods with high blue fluorescence. J Am Chem Soc 135:10618–10621. https://doi.org/10.1021/ja4047476

    Article  CAS  PubMed  Google Scholar 

  103. Shang L, Shangguan F, Cheng Y, Lu J, Xie Z, Zhao Y, Gu Z (2013) Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale 5:9553–9557. https://doi.org/10.1039/c3nr03218c

    Article  CAS  PubMed  Google Scholar 

  104. Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X (2015) Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem Int Ed Engl 54:3952–3956. https://doi.org/10.1002/anie.201500096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du XY, Li Q, Wu G, Chen S (2019) Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 31:e1903733. https://doi.org/10.1002/adma.201903733

    Article  CAS  PubMed  Google Scholar 

  106. Liu L, Hu R, Law W-C, Roy I, Zhu J, Ye L, Hu S, Zhang X, Yong K-T (2013) Optimizing the synthesis of red-and near-infrared CuInS 2 and AgInS 2 semiconductor nanocrystals for bioimaging. Analyst 138:6144–6153. https://doi.org/10.1039/C3AN01030A

    Article  CAS  PubMed  Google Scholar 

  107. Dai M, Ogawa S, Kameyama T, Okazaki K-I, Kudo A, Kuwabata S, Tsuboi Y, Torimoto T (2012) Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS 2 nanoparticles. J Mater Chem 22:12851–12858. https://doi.org/10.1039/C2JM31463K

    Article  CAS  Google Scholar 

  108. Fahmi MZ, Chang JY (2013) Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting. Nanoscale 5:1517–1528. https://doi.org/10.1039/c2nr33429a

    Article  CAS  PubMed  Google Scholar 

  109. Xiong WW, Yang GH, Wu XC, Zhu JJ (2013) Microwave-assisted synthesis of highly luminescent AgInS(2)/ZnS nanocrystals for dynamic intracellular Cu(ii) detection. J Mater Chem B 1:4160–4165. https://doi.org/10.1039/c3tb20638f

    Article  CAS  PubMed  Google Scholar 

  110. Ma H, Pan L, Wang J, Zhang L, Zhang Z (2019) Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chin Chem Lett 30:79–82. https://doi.org/10.1016/j.cclet.2018.04.033

    Article  CAS  Google Scholar 

  111. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. https://doi.org/10.1126/science.271.5251.93

    Article  CAS  Google Scholar 

  112. Mishra N, Vasavi Dutt V, Arciniegas MP (2019) Recent progress on metal chalcogenide semiconductor tetrapod-shaped colloidal nanocrystals and their applications in optoelectronics. Chem Mater 31:9216–9242. https://doi.org/10.1021/acs.chemmater.8b05363

    Article  CAS  Google Scholar 

  113. Lim J, Bae WK, Park KU, Zur Borg L, Zentel R, Lee S, Char K (2013) Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation. Chem Mater 25:1443–1449. https://doi.org/10.1021/cm3035592

    Article  CAS  Google Scholar 

  114. Xie R, Zhou M (2015) Zinc chalcogenide seed-mediated synthesis of CdSe nanocrystals: nails, chesses and tetrahedrons. Chem Mater 27:3055–3064. https://doi.org/10.1021/acs.chemmater.5b00489

    Article  CAS  Google Scholar 

  115. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696. https://doi.org/10.1021/nl5048779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  117. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Engl 52:3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  PubMed  Google Scholar 

  118. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  119. Baker SN, Baker GA (2010) Lumineszierende kohlenstoff-nanopunkte: Nanolichtquellen mit zukunft. Angew Chem 122:6876–6896. https://doi.org/10.1002/ange.200906623

    Article  Google Scholar 

  120. Zhao L, Di F, Wang D, Guo L-H, Yang Y, Wan B, Zhang H (2013) Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale 5:2655–2658. https://doi.org/10.1039/C3NR00358B

    Article  CAS  PubMed  Google Scholar 

  121. Lu Y, Zhang L, Lin H (2014) The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots. Chemistry 20:4246–4250. https://doi.org/10.1002/chem.201304358

    Article  CAS  PubMed  Google Scholar 

  122. Gomez-de Pedro S, Salinas-Castillo A, Ariza-Avidad M, Lapresta-Fernandez A, Sanchez-Gonzalez C, Martinez-Cisneros CS, Puyol M, Capitan-Vallvey LF, Alonso-Chamarro J (2014) Microsystem-assisted synthesis of carbon dots with fluorescent and colorimetric properties for pH detection. Nanoscale 6:6018–6024. https://doi.org/10.1039/c4nr00573b

    Article  CAS  PubMed  Google Scholar 

  123. Laouini A, Charcosset C, Fessi H, Holdich RG, Vladisavljević G (2013) Preparation of liposomes: a novel application of microengineered membranes-investigation of the process parameters and application to the encapsulation of vitamin E. RSC Adv 3:4985–4994. https://doi.org/10.1039/C3RA23411H

    Article  CAS  Google Scholar 

  124. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. https://doi.org/10.1016/j.addr.2012.09.037

    Article  CAS  PubMed  Google Scholar 

  125. Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Control Release 164:236–246. https://doi.org/10.1016/j.jconrel.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wagner A, Vorauer-Uhl K (2011) Liposome technology for industrial purposes. J Drug Deliv 2011:591325. https://doi.org/10.1155/2011/591325

    Article  CAS  PubMed  Google Scholar 

  127. Amrani S, Tabrizian M (2018) Characterization of nanoscale loaded liposomes produced by 2D hydrodynamic flow focusing. ACS Biomater Sci Eng 4:502–513. https://doi.org/10.1021/acsbiomaterials.7b00572

    Article  CAS  PubMed  Google Scholar 

  128. Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675. https://doi.org/10.1021/ja0318030

    Article  CAS  PubMed  Google Scholar 

  129. Au AK, Huynh W, Horowitz LF, Folch A (2016) 3D-printed microfluidics. Angew Chem Int Ed Engl 55:3862–3881. https://doi.org/10.1002/anie.201504382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sochol RD, Sweet E, Glick CC, Wu S-Y, Yang C, Restaino M, Lin L (2018) 3D printed microfluidics and microelectronics. Microelectron Eng 189:52–68. https://doi.org/10.1016/j.mee.2017.12.010

    Article  CAS  Google Scholar 

  131. Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16:1993–2013

    Article  CAS  PubMed  Google Scholar 

  132. Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–1742. https://doi.org/10.1039/c6lc00163g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho CM, Ng SH, Li KH, Yoon YJ (2015) 3D printed microfluidics for biological applications. Lab Chip 15:3627–3637. https://doi.org/10.1039/c5lc00685f

    Article  CAS  PubMed  Google Scholar 

  134. Bhushan B, Caspers M (2017) An overview of additive manufacturing (3D printing) for microfabrication. Microsyst Technol 23:1117–1124. https://doi.org/10.1007/s00542-017-3342-8

    Article  Google Scholar 

  135. Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293. https://doi.org/10.1021/la070051a

    Article  CAS  PubMed  Google Scholar 

  136. Hood RR, DeVoe DL (2015) High-throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing. Small 11:5790–5799. https://doi.org/10.1002/smll.201501345

    Article  CAS  PubMed  Google Scholar 

  137. Ballacchino G, Weaver E, Mathew E, Dorati R, Genta I, Conti B, Lamprou DA (2021) Manufacturing of 3D-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int J Mol Sci 22:8064. https://doi.org/10.3390/ijms22158064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lopez-Royo T, Sebastian V, Moreno-Martinez L, Uson L, Yus C, Alejo T, Zaragoza P, Osta R, Arruebo M, Manzano R (2021) Encapsulation of large-size plasmids in PLGA nanoparticles for gene editing: comparison of three different synthesis methods. Nanomaterials (Basel) 11:2723. https://doi.org/10.3390/nano11102723

    Article  CAS  PubMed  Google Scholar 

  139. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397. https://doi.org/10.3390/polym3031377

    Article  CAS  PubMed  Google Scholar 

  140. Damiati SA, Damiati S (2021) Microfluidic synthesis of indomethacin-loaded PLGA microparticles optimized by machine learning. Front Mol Biosci 8:677547. https://doi.org/10.3389/fmolb.2021.677547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. He C, Zeng W, Su Y, Sun R, Xiao Y, Zhang B, Liu W, Wang R, Zhang X, Chen C (2021) Microfluidic-based fabrication and characterization of drug-loaded PLGA magnetic microspheres with tunable shell thickness. Drug Deliv 28:692–699. https://doi.org/10.1080/10717544.2021.1905739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Martin-Banderas L, Flores-Mosquera M, Riesco-Chueca P, Rodriguez-Gil A, Cebolla A, Chavez S, Ganan-Calvo AM (2005) Flow focusing: a versatile technology to produce size-controlled and specific-morphology microparticles. Small 1:688–692. https://doi.org/10.1002/smll.200500087

    Article  CAS  PubMed  Google Scholar 

  143. Abualsayed A, Abouelmagd S, Abdelgawad M (2019) Nanoparticles synthesis using digital microfluidics. IEEE 14th international conference on nano/micro engineered and molecular systems (NEMS), pp 201–204

  144. Jin C, Kulkarni A, Teo N, Jana SC (2020) Fabrication of pill-shaped polyimide aerogel particles using microfluidic flows. Ind Eng Chem Res 60:361–370. https://doi.org/10.1021/acs.iecr.0c05424

    Article  CAS  Google Scholar 

  145. Gaikwad G, Bangde P, Rane K, Stenberg J, Borde L, Bhagwat S, Dandekar P, Jain R (2021) Continuous production and separation of new biocompatible palladium nanoparticles using a droplet microreactor. Microfluid Nanofluid 25:27. https://doi.org/10.1007/s10404-020-02410-x

    Article  CAS  Google Scholar 

  146. Adamo CB, Junger AS, Bressan LP, da Silva JAF, Poppi RJ, de Jesus DP (2020) Fast and straightforward in-situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. Microchem J 156:104985. https://doi.org/10.1016/j.microc.2020.104985

    Article  CAS  Google Scholar 

  147. Uson L, Arruebo M, Sebastian V, Santamaria J (2018) Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles. Chem Eng J 340:66–72. https://doi.org/10.1016/j.cej.2017.12.024

    Article  CAS  Google Scholar 

  148. Marelli M, Bossola F, Spinetti G, Sangalli E, Santo VD, Psaro R, Polito L (2020) Microfluidic synthesis of hybrid TiO2-anisotropic gold nanoparticles with visible and near-infrared activity. ACS Appl Mater Interfaces 12:38522–38529. https://doi.org/10.1021/acsami.0c08241

    Article  CAS  PubMed  Google Scholar 

  149. Chen J, Li S, Yao F, Bao F, Ge Y, Zou M, Liang P, Chen Q (2022) Progress of microfluidics combined with SERS technology in the trace detection of harmful substances. Chemosensors 10:449. https://doi.org/10.3390/chemosensors10110449

    Article  CAS  Google Scholar 

  150. Lin L, Yin Y, Starostin SA, Xu H, Li C, Wu K, He C, Hessel V (2021) Microfluidic fabrication of fluorescent nanomaterials: a review. Chem Eng J 425:131511. https://doi.org/10.1016/j.cej.2021.131511

    Article  CAS  Google Scholar 

  151. Yashina A, Lignos I, Stavrakis S, Choo J, deMello AJ (2016) Scalable production of CuInS2/ZnS quantum dots in a two-step droplet-based microfluidic platform. J Mater Chem C 4:6401–6408. https://doi.org/10.1039/c6tc02057g

    Article  CAS  Google Scholar 

  152. Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello AJ, Kovalenko MV (2016) Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett 16:1869–1877. https://doi.org/10.1021/acs.nanolett.5b04981

    Article  CAS  PubMed  Google Scholar 

  153. Bemetz J, Wegemann A, Saatchi K, Haase A, Hafeli UO, Niessner R, Gleich B, Seidel M (2018) Microfluidic-based synthesis of magnetic nanoparticles coupled with miniaturized NMR for online relaxation studies. Anal Chem 90:9975–9982. https://doi.org/10.1021/acs.analchem.8b02374

    Article  CAS  PubMed  Google Scholar 

  154. Wu Z, Zhao C, Hou L, Liu J, Chen H, Huang Q, Zhang Y, Duan YL, Wang H (2018) Enhanced immunofluorescence detection of a protein marker using a PAA modified ZnO nanorod array-based microfluidic device. Nanoscale 10:17663–17670. https://doi.org/10.1039/c8nr05116j

    Article  CAS  PubMed  Google Scholar 

  155. Guo L, Shi Y, Liu X, Han Z, Zhao Z, Chen Y, Xie W, Li X (2018) Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosens Bioelectron 99:368–374. https://doi.org/10.1016/j.bios.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  156. Lawanstiend D, Gatemala H, Nootchanat S, Eakasit S, Wongravee K, Srisa-Art M (2018) Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates. Sens Actuators, B Chem 270:466–474. https://doi.org/10.1016/j.snb.2018.05.051

    Article  CAS  Google Scholar 

  157. Nie Y, Jin C, Zhang JXJ (2021) Microfluidic in situ patterning of silver nanoparticles for surface-enhanced Raman spectroscopic sensing of biomolecules. ACS Sens 6:2584–2592. https://doi.org/10.1021/acssensors.1c00117

    Article  CAS  PubMed  Google Scholar 

  158. Ma J, Tong X, Wang J, Zhang G, Lv Y, Zhu Y, Sun S, Yang Y-C, Song Y (2019) Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance. Electrochim Acta 299:80–88. https://doi.org/10.1016/j.electacta.2018.12.132

    Article  CAS  Google Scholar 

  159. Jaouhari T, Zhang F, Tassaing T, Fery-Forgues S, Aymonier C, Marre S, Erriguible A (2020) Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system. Chem Eng J 397:125333. https://doi.org/10.1016/j.cej.2020.125333

    Article  CAS  Google Scholar 

  160. Zhang L, Nakamura H, Lee C, Uehara M, Maeda H (2011) Determination of kinetic effects on particle size and concentration: Instruction for scale up. IOP Conference Series: Mater Sci Eng 18:082027

  161. Furxhi I, Murphy F, Mullins M, Poland CA (2019) Machine learning prediction of nanoparticle in vitro toxicity: a comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol Lett 312:157–166. https://doi.org/10.1016/j.toxlet.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  162. Kashiwagi T, Sue K, Takebayashi Y, Ono T (2022) High-throughput synthesis of silver nanoplates and optimization of optical properties by machine learning. Chem Eng Sci 262:118009. https://doi.org/10.1016/j.ces.2022.118009

    Article  CAS  Google Scholar 

  163. Tao H, Wu T, Kheiri S, Aldeghi M, Aspuru-Guzik A, Kumacheva E (2021) Self-driving platform for metal nanoparticle synthesis: combining microfluidics and machine learning. Adv Funct Mater 31:2106725. https://doi.org/10.1002/adfm.202106725

    Article  CAS  Google Scholar 

  164. Salley D, Keenan G, Grizou J, Sharma A, Martin S, Cronin L (2020) A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat Commun 11:2771. https://doi.org/10.1038/s41467-020-16501-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tao H, Wu T, Aldeghi M, Wu TC, Aspuru-Guzik A, Kumacheva E (2021) Nanoparticle synthesis assisted by machine learning. Nat Rev Mater 6:701–716. https://doi.org/10.1038/s41578-021-00337-5

    Article  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (Grant Nos. 22174133, 12274386, 51832005, 62075203, and 1210042018) and Zhejiang Provincial Natural Science Foundation of China (No. LGF21F050002), and the Preeminence Youth Science Funds of Zhejiang Province (No. LR19F050001), the National Key R&D Plan (No.2021YFC3340400), and the Key R&D Plan of Zhejiang Province (Nos. 2022C01127 and 2021C05005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Liang or Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, F., Zhu, P., Chen, J. et al. Synthesis of nanoparticles via microfluidic devices and integrated applications. Microchim Acta 190, 256 (2023). https://doi.org/10.1007/s00604-023-05838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05838-4

Keywords

Navigation