Skip to main content

Advertisement

Log in

Droplet microarray platforms for high-throughput drug screening

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

High-throughput screening platforms are fundamental for the rapid and efficient processing of large amounts of experimental data. Parallelization and miniaturization of experiments are important for improving their cost-effectiveness. The development of miniaturized high-throughput screening platforms is essential in the fields of biotechnology, medicine, and pharmacology. Currently, most laboratories use 96- or 384-well microtiter plates for screening; however, they have disadvantages, such as high reagent and cell consumption, low throughput, and inability to avoid cross-contamination, which need to be further optimized. Droplet microarrays, as novel screening platforms, can effectively avoid these shortcomings. Here, the preparation method of the droplet microarray, method of adding compounds in parallel, and means to read the results are briefly described. Next, the latest research on droplet microarray platforms in biomedicine is presented, including their application in high-throughput culture, cell screening, high-throughput nucleic acid screening, drug development, and individualized medicine. Finally, the challenges and future trends in droplet microarray technology are summarized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chen YF, Wang C, Ren KF, Ji J (2021) Droplet microarrays in biomedical high-throughput research. Prog Chem 33(4):543–554. https://doi.org/10.7536/pc200667

    Article  CAS  Google Scholar 

  2. Sarkar J, Kumar A (2021) Recent advances in biomaterial-based high-throughput platforms. Biotechnol J 16(2). https://doi.org/10.1002/biot.202000288

  3. Brehm M, Heissler S, Afonin S, Levkin PA (2020) Nanomolar synthesis in droplet microarrays with UV-triggered on-chip cell screening. Small 16(10):10. https://doi.org/10.1002/smll.201905971

    Article  CAS  Google Scholar 

  4. Tronser T, Demir K, Reischl M, Bastmeyer M, Levkin PA (2018) Droplet microarray: miniaturized platform for rapid formation and high-throughput screening of embryoid bodies. Lab Chip 18(15):2257–2269. https://doi.org/10.1039/c8lc00450a

    Article  CAS  PubMed  Google Scholar 

  5. Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA (2016) Droplet-microarray on superhydrophobic-superhydrophilic patterns for high-throughput live cell screenings. Rsc Advances 6(44):38263–38276. https://doi.org/10.1039/c6ra06011k

    Article  CAS  Google Scholar 

  6. Chakraborty S, Gourain V, Benz M, Scheiger JM, Levkin PA, Popova AA (2021) Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape. Mater Today Bio 11:12. https://doi.org/10.1016/j.mtbio.2021.100112

    Article  CAS  Google Scholar 

  7. Popova AA, Tronser T, Demir K, Haitz P, Kuodyte K, Starkuviene V, Wajda P, Levkin PA (2019) Facile one step formation and screening of tumor spheroids using droplet-microarray platform. Small 15(25):9. https://doi.org/10.1002/smll.201901299

    Article  CAS  Google Scholar 

  8. Pihl J, Karlsson M, Chiu DT (2005) Microfluidic technologies in drug discovery. Drug Discov Today 10(20):1377–1383. https://doi.org/10.1016/s1359-6446(05)03571-3

    Article  CAS  PubMed  Google Scholar 

  9. Popova AA, Depew C, Permana KM, Trubitsyn A, Peravali R, Ordiano JAG, Reischl M, Levkin PA (2017) Evaluation of the droplet-microarray platform for high-throughput screening of suspension cells. SLAS Technol 22(2):163–175. https://doi.org/10.1177/2211068216677204

    Article  PubMed  Google Scholar 

  10. Papp K, Szittner Z, Prechl J (2012) Life on a microarray: assessing live cell functions in a microarray format. Cell Mol Life Sci 69(16):2717–2725. https://doi.org/10.1007/s00018-012-0947-z

    Article  CAS  PubMed  Google Scholar 

  11. Xia Y, Chen H, Li J, Hu H, Qian Q, He RX, Ding Z, Guo SS (2021) Acoustic droplet-assisted superhydrophilic-superhydrophobic microarray platform for high-throughput screening of patient-derived tumor spheroids. ACS Appl Mater Interfaces 13(20):23489–23501. https://doi.org/10.1021/acsami.1c06655

    Article  CAS  PubMed  Google Scholar 

  12. Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411(6833):107–110. https://doi.org/10.1038/35075114

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Chakraborty S, Direksilp C, Scheiger JM, Popova AA, Levkin PA (2021) Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem cell pluripotency. Mater Today Bio 12:100153. https://doi.org/10.1016/j.mtbio.2021.100153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Tronser T, Peravali R, Reischl M, Levkin PA (2020) High-throughput screening of cell transfection enhancers using miniaturized droplet microarrays. Adv Biosyst 4(3):e1900257. https://doi.org/10.1002/adbi.201900257

    Article  PubMed  Google Scholar 

  15. Zhang H, Oellers T, Feng W, Abdulazim T, Saw EN, Ludwig A, Levkin PA, Plumere N (2017) High-density droplet microarray of individually addressable electrochemical cells. Anal Chem 89(11):5832–5839. https://doi.org/10.1021/acs.analchem.7b00008

    Article  CAS  PubMed  Google Scholar 

  16. Bruchmann J, Pini I, Gill TS, Schwartz T, Levkin PA (2017) Patterned SLIPS for the formation of arrays of biofilm microclusters with defined geometries. Adv Healthc Mater 6(1):9. https://doi.org/10.1002/adhm.201601082

    Article  CAS  Google Scholar 

  17. Li Y, Chen P, Wang Y, Yan S, Feng X, Du W, Koehler SA, Demirci U, Liu BF (2016) Rapid assembly of heterogeneous 3D cell microenvironments in a microgel array. Adv Mater 28(18):3543–3548. https://doi.org/10.1002/adma.201600247

    Article  CAS  PubMed  Google Scholar 

  18. Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA (2011) Superhydrophobic-superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays. Angew Chem Int Ed Engl 50(36):8424–8427. https://doi.org/10.1002/anie.201102545

    Article  CAS  PubMed  Google Scholar 

  19. Shao CM, Liu YX, Chi JJ, Chen ZY, Wang J, Zhao YJ (2019) Droplet microarray on patterned butterfly wing surfaces for cell spheroid culture. Langmuir 35(10):3832–3839. https://doi.org/10.1021/acs.langmuir.8b03884

    Article  CAS  PubMed  Google Scholar 

  20. Cui HJ, Wang XX, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA (2021) Assembly of multi-spheroid cellular architectures by programmable droplet merging. Adv Mater 33(4):11. https://doi.org/10.1002/adma.202006434

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhu Y, Yao B, Fang Q (2011) Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab Chip 11(8):1545–1549. https://doi.org/10.1039/c0lc00502a

    Article  CAS  PubMed  Google Scholar 

  22. Liberski AR, Delaney JT, Schubert US (2011) "One Cell-One Well": a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13(2):190–195. https://doi.org/10.1021/co100061c

    Article  CAS  PubMed  Google Scholar 

  23. Ueda E, Geyer FL, Nedashkivska V, Levkin PA (2012) Droplet microarray: facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications. Lab on a Chip 12(24):5218–5224. https://doi.org/10.1039/c2lc40921f

    Article  CAS  PubMed  Google Scholar 

  24. Feng WQ, Li LX, Ueda E, Li JS, Heissler S, Welle A, Trapp O, Levkin PA (2014) Surface patterning via thiol-yne click chemistry: an extremely fast and versatile approach to superhydrophilic-superhydrophobic micropatterns. Adv Mater Interfaces 1(7):6. https://doi.org/10.1002/admi.201400269

    Article  CAS  Google Scholar 

  25. Arrabito G, Galati C, Castellano S, Pignataro B (2013) Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. Lab on a Chip 13(1):68–72. https://doi.org/10.1039/c2lc40948h

    Article  CAS  PubMed  Google Scholar 

  26. da Silva L, Schober L, Sloff M, Traube A, Hart ML, Feitz WFJ, Stenzl A (2015) New technique for needle-less implantation of eukaryotic cells. Cytotherapy 17(11):1655–1661. https://doi.org/10.1016/j.jcyt.2015.07.017

    Article  CAS  Google Scholar 

  27. Popova AA, Marcato D, Peravali R, Wehl I, Schepers U, Levkin PA (2018) Fish-microarray: a miniaturized platform for single-embryo high-throughput screenings. Adv Funct Mater 28(3):12. https://doi.org/10.1002/adfm.201703486

    Article  CAS  Google Scholar 

  28. Oliveira MB, Neto AI, Correia CR, Rial-Hermida MI, Alvarez-Lorenzo C, Mano JF (2014) Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl Mater Interfaces 6(12):9488–9495. https://doi.org/10.1021/am5018607

    Article  CAS  PubMed  Google Scholar 

  29. Van Berkel GJ, Kertesz V, Boeltz H (2017) Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface. Bioanalysis 9(21):1667–1679. https://doi.org/10.4155/bio-2017-0104

    Article  CAS  PubMed  Google Scholar 

  30. Schober L, Buttner E, Laske C, Traube A, Brode T, Traube AF, Bauernhansl T (2015) Cell dispensing in low-volume range with the immediate drop-on-demand technology (I-DOT). Jala 20(2):154–163. https://doi.org/10.1177/2211068214562450

    Article  CAS  PubMed  Google Scholar 

  31. Weigt D, Sammour DA, Ulrich T, Munteanu B, Hopf C (2018) Automated analysis of lipid drug-response markers by combined fast and high-resolution whole cell MALDI mass spectrometry biotyping. Sci Rep 8:9. https://doi.org/10.1038/s41598-018-29677-z

    Article  CAS  Google Scholar 

  32. RamalloGuevara C, Paulssen D, Popova AA, Hopf C, Levkin PA (2021) Fast nanoliter-scale cell assays using droplet microarray-mass spectrometry imaging. Adv Biol 5(3):11. https://doi.org/10.1002/adbi.202000279

    Article  CAS  Google Scholar 

  33. Chakraborty S, Luchena C, Elton JJ, Schilling MP, Reischl M, Roux M, Levkin PA, Popova AA (2022) "Cells-to-cDNA on Chip": phenotypic assessment and gene expression analysis from live cells in nanoliter volumes using droplet microarrays. Adv Healthc Mater 11(12):e2102493. https://doi.org/10.1002/adhm.202102493

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Bertels S, Reischl M, Peravali R, Bastmeyer M, Popova AA, Levkin PA (2022) Droplet microarray based screening identifies proteins for maintaining pluripotency of hiPSCs. Adv Healthc Mater 11(18):e2200718. https://doi.org/10.1002/adhm.202200718

    Article  CAS  PubMed  Google Scholar 

  35. Popova AA, Dietrich S, Huber W, Reischl M, Peravali R, Levkin PA (2021) Miniaturized drug sensitivity and resistance test on patient-derived cells using droplet-microarray. SLAS Technol 26(3):274–286. https://doi.org/10.1177/2472630320934432

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Xue Y, Huang J, Ren K, Greiner A, Agarwal S, Ji J (2021) A facile method for high-throughput screening of drug-eluting coatings in droplet microarrays based on ultrasonic spray deposition. Biomater Sci 9(20):6787–6794. https://doi.org/10.1039/d1bm01213d

    Article  CAS  PubMed  Google Scholar 

  37. Oudeng G, Benz M, Popova AA, Zhang Y, Yi C, Levkin PA, Yang M (2020) Droplet microarray based on nanosensing probe patterns for simultaneous detection of multiple HIV retroviral nucleic acids. ACS Appl Mater Interfaces 12(50):55614–55623. https://doi.org/10.1021/acsami.0c16146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lei W, Demir K, Overhage J, Grunze M, Schwartz T, Levkin PA (2020) Droplet-microarray: miniaturized platform for high-throughput screening of antimicrobial compounds. Adv Biosyst 4(10):e2000073. https://doi.org/10.1002/adbi.202000073

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y (2020) Droplet precise self-splitting on patterned adhesive surfaces for simultaneous multidetection. Angew Chem Int Ed Engl 59(26):10535–10539. https://doi.org/10.1002/anie.202003839

    Article  CAS  PubMed  Google Scholar 

  40. Kato K, Umezawa K, Miyake M, Miyake J, Nagamune T (2004) Transfection microarray of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified glass slide. Biotechniques 37(3):444-+. https://doi.org/10.2144/04373rr02

    Article  CAS  PubMed  Google Scholar 

  41. Nomura S (2021) Single-cell genomics to understand disease pathogenesis. J Hum Genet 66(1):75–84. https://doi.org/10.1038/s10038-020-00844-3

    Article  PubMed  Google Scholar 

  42. Hughey JJ, Gutschow MV, Bajar BT, Covert MW (2015) Single-cell variation leads to population invariance in NF-kappaB signaling dynamics. Mol Biol Cell 26(3):583–590. https://doi.org/10.1091/mbc.E14-08-1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valihrach L, Androvic P, Kubista M (2018) Platforms for single-cell collection and analysis. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030807

  44. Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1):110–119. https://doi.org/10.1016/j.copbio.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  45. Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184. https://doi.org/10.3390/ijms160818149

    Article  CAS  PubMed  Google Scholar 

  46. Chatzimichail S, Supramaniam P, Ces O, Salehi-Reyhani A (2018) Counting proteins in single cells with addressable droplet microarrays. J Vis Exp 137. https://doi.org/10.3791/56110

  47. Jogia GE, Tronser T, Popova AA, Levkin PA (2016) Droplet microarray based on superhydrophobic-superhydrophilic patterns for single cell analysis. Microarrays (Basel, Switzerland) 5(4)

  48. Zhu Y, Zhang YX, Liu WW, Ma Y, Fang Q, Yao B (2015) Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot. Sci Rep 5:7. https://doi.org/10.1038/srep09551

    Article  CAS  Google Scholar 

  49. Salehi-Reyhani A, Burgin E, Ces O, Willison KR, Klug DR (2014) Addressable droplet microarrays for single cell protein analysis. Analyst 139(21):5367–5374. https://doi.org/10.1039/c4an01208a

    Article  CAS  PubMed  Google Scholar 

  50. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519. https://doi.org/10.1038/nrd3480

    Article  CAS  PubMed  Google Scholar 

  51. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324. https://doi.org/10.1038/nprot.2008.226

    Article  CAS  PubMed  Google Scholar 

  52. Rothbauer M, Wartmann D, Charwat V, Ertl P (2015) Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 33(6):948–961. https://doi.org/10.1016/j.biotechadv.2015.06.006

    Article  PubMed  Google Scholar 

  53. Yen TM, Zhang TT, Chen PW, Ku TH, Chiu YJ, Lian I, Lo YH (2015) Self-assembled pico-liter droplet microarray for ultrasensitive nucleic acid quantification. ACS Nano 9(11):10655–10663. https://doi.org/10.1021/acsnano.5b03848

    Article  CAS  PubMed  Google Scholar 

  54. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  55. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377. https://doi.org/10.1016/j.semcancer.2005.05.002

    Article  PubMed  Google Scholar 

  56. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10(1):68. https://doi.org/10.1186/s13287-019-1165-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu G, David BT, Trawczynski M, Fessler RG (2020) Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 16(1):3–32. https://doi.org/10.1007/s12015-019-09935-x

    Article  PubMed  Google Scholar 

  58. Yamanaka S (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7(1):1–2. https://doi.org/10.1016/j.stem.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  59. Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to Matrigel. Nat Rev Mater 5(7):539–551. https://doi.org/10.1038/s41578-020-0199-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hayashi Y, Furue MK (2016) biological effects of culture substrates on human pluripotent stem cells. Stem Cells Int 2016:5380560. https://doi.org/10.1155/2016/5380560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reimer A, Vasilevich A, Hulshof F, Viswanathan P, van Blitterswijk CA, de Boer J, Watt FM (2016) Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Sci Rep 6:18948. https://doi.org/10.1038/srep18948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tronser T, Popova AA, Jaggy M, Bastmeyer M, Levkin PA (2017) Droplet microarray based on patterned superhydrophobic surfaces prevents stem cell differentiation and enables high-throughput stem cell screening. Adv Healthc Mater 6(23). https://doi.org/10.1002/adhm.201700622

  63. Dupont G, Yilmaz E, Loukas M, Macchi V, De Caro R, Tubbs RS (2019) Human embryonic stem cells: distinct molecular personalities and applications in regenerative medicine. Clin Anat 32(3):354–360. https://doi.org/10.1002/ca.23318

    Article  PubMed  PubMed Central  Google Scholar 

  64. van der Sanden B, Dhobb M, Berger F, Wion D (2010) Optimizing stem cell culture. J Cell Biochem 111(4):801–807. https://doi.org/10.1002/jcb.22847

    Article  CAS  PubMed  Google Scholar 

  65. Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA (2015) Hierarchical micro-nano surface topography promotes long-term maintenance of undifferentiated mouse embryonic stem cells. Nano Lett 15(10):7146–7154. https://doi.org/10.1021/acs.nanolett.5b03359

    Article  CAS  PubMed  Google Scholar 

  66. Brickman JM, Serup P (2017) Properties of embryoid bodies, Wiley Interdiscip Rev. Wiley Interdiscip Rev Dev Biol 6(2). https://doi.org/10.1002/wdev.259

  67. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436. https://doi.org/10.1016/s1359-6446(01)01757-3

    Article  CAS  PubMed  Google Scholar 

  68. Tian F, Lyu J, Shi JY, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89:123–135. https://doi.org/10.1016/j.bios.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  69. Shi J, Lyu J, Tian F, Yang M (2017) A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron 93:182–188. https://doi.org/10.1016/j.bios.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  70. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  71. Weaver IN, Weaver DF (2013) Drug design and discovery: translational biomedical science varies among countries. CTS-Clin Transl Sci 6(5):409–413. https://doi.org/10.1111/cts.12058

    Article  Google Scholar 

  72. Giuliano KA, Haskins JR, Taylor DL (2003) Advances in high content screening for drug discovery. Assay Drug Dev Technol 1(4):565–577. https://doi.org/10.1089/154065803322302826

    Article  CAS  PubMed  Google Scholar 

  73. Littman BH, Williams SA (2005) The ultimate model organism: progress in experimental medicine. Nat Rev Drug Discov 4(8):631–638. https://doi.org/10.1038/nrd1800

    Article  CAS  PubMed  Google Scholar 

  74. Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci U (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3(3):034101. https://doi.org/10.1088/1758-5082/3/3/034101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. M. Benz, M.R. Molla, A. Boser, A. Rosenfeld, P.A. Levkin, Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening, Nat Commun 10(1) (2019) 2879. https://doi.org/10.1038/s41467-019-10685-0

  76. Rosenfeld A, Brehm M, Welle A, Trouillet V, Heissler S, Benz M, Levkin PA (2019) Solid-phase combinatorial synthesis using microarrays of microcompartments with light-induced on-chip cell screening. Mater Today Bio 3:100022. https://doi.org/10.1016/j.mtbio.2019.100022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hulme C, Gore V (2003) "Multi-component reactions : emerging chemistry in drug discovery" ‘From xylocain to crixivan’. Curr Med Chem 10(1):51–80. https://doi.org/10.2174/0929867033368600

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the invitation of the editorial office and the valuable comments of all referees.

Funding

This study was supported by the Natural Science Foundation of Sichuan Provincial Department of Science and Technology (2022NSFSC1446), the Popularized Application Project of Sichuan Provincial Health Commission (No. chuan-gan-yan2023-214), the Central Universities Foundation of University of Electronic Science and Technology of China (No. ZYGX2019J109), and the National Natural Science Foundation of China (No. 62271184 and No. 81603018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.S., S.L., X.L., X.H., and H.L.; writing—original draft writing: L.S., S.L., X.L., Z.L.; writing—review and editing: H.L., Z.L., L.W, Q.B., and X.D.; supervision: C.L., S.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shan Liu.

Ethics declarations

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Liu, S., Li, X. et al. Droplet microarray platforms for high-throughput drug screening. Microchim Acta 190, 260 (2023). https://doi.org/10.1007/s00604-023-05833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05833-9

Keywords

Navigation