Skip to main content
Log in

Sandwich-type electrochemical immunosensor based on CuFe2O4-Pd for cardiac troponin I detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-type electrochemical immunosensor was designed by highly efficient catalytic cycle amplification strategy of CuFe2O4-Pd for sensitive detection of cardiac troponin I. CuFe2O4 with coupled variable valence metal elements exhibited favorable catalytic performance through bidirectional cycling of Fe2+/Fe3+ and Cu+/Cu2+ redox pairs. More importantly, Cu+ acted as the intermediate product of the catalytic reaction, promoted the regeneration of Fe2+ and ensured the continuous recycling occurrence of the double redox pairs, and significantly amplified the current signal response. Pd nanoparticles (Pd NPs) loaded on the surface of amino-functionalized CuFe2O4 (CuFe2O4-NH2) served as electrochemical mediators to capture labeled antibodies (Ab2), and also as co-catalysts of CuFe2O4 to further enhance the catalytic efficiency, thus improving the sensitivity of the electrochemical immunosensor. Under the optimal experimental conditions, the linear range was 0.001 ~ 100 ng/mL, and the detection limit was 1.91 fg/mL. The electrochemical immunosensor has excellent analytical performance, giving a new impetus for the sensitive detection of cTnI.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang H, Luo Y, Li Y, Song Y, Wang L (2022) An Immunosensor Using Electroactive COF as Signal Probe for Electrochemical Detection of Carcinoembryonic Antigen. Anal Chem 94:5352–5358

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Wang S, Ren J, Zhao H, Cui M, Li N, Li M, Zhang C (2022) Electrocatalysis of Copper Sulfide Nanoparticle-Engineered Covalent Organic Frameworks for Ratiometric Electrochemical Detection of Amyloid-beta Oligomer. Anal Chem 94:11201–11208

    Article  CAS  PubMed  Google Scholar 

  3. Biswas S, Lan Q, Li C, Xia XH (2022) Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Anal Chem 94:3013–3019

    Article  CAS  PubMed  Google Scholar 

  4. Ouyang R, Jiang L, Xie X, Yuan P, Zhao Y, Li Y, Tamayo AIB, Liu B, Miao Y (2023) Ti3C2@Bi2O3 nanoaccordion for electrochemical determination of miRNA-21. Mikrochim Acta 190:52

    Article  CAS  PubMed  Google Scholar 

  5. Li F, Li Y, Feng J, Dong Y, Wang P, Chen L, Chen Z, Liu H, Wei Q (2017) Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 87:630–637

    Article  CAS  PubMed  Google Scholar 

  6. Cao L, Cai J, Deng W, Tan Y, Xie Q (2020) NiCoO2@CeO2 nanoboxes for ultrasensitive electrochemical immunosensing based on the oxygen evolution reaction in a neutral medium: Application for interleukin-6 detection. Anal Chem 92:16267–16273

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Kang J, Wang S, Chen S, Guo H, Chen M (2023) An electrochemical immunosensor based on polyaniline microtubules and zinc gallinate for detection of human growth differentiation factor-15. Mikrochim Acta 190:92

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C, Zhang N, Xu Y, Feng J, Yao T, Wang F, Ma Z, Han H (2021) Fenton reaction-mediated dual-attenuation of signal for ultrasensitive amperometric immunoassay. Biosens Bioelectron 178:113009

  9. Liang X, Han H, Ma Z (2019) pH responsive amperometric immunoassay for carcinoma antigen 125 based on hollow polydopamine encapsulating methylene blue. Sens Actuators, B Chem 290:625–630

    Article  CAS  Google Scholar 

  10. Wu Y, Tilley RD, Gooding JJ (2019) Challenges and solutions in developing ultrasensitive biosensors. J Am Chem Soc 141:1162–1170

    Article  CAS  PubMed  Google Scholar 

  11. Zhong H, Yu C, Gao R, Chen J, Yu Y, Geng Y, Wen Y, He J (2019) A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosens Bioelectro 144:111635

  12. Zhao Y, Wang X, Li H, Qian B, Zhang Y, Wu Y (2022) Synthesis of Co3O4 nanospheres for enhanced photo-assisted supercapacitor. Chem Eng J 431:133981

  13. Amin S, Tahira A, Solangi A, Beni V, Morante JR, Liu X, Falhman M, Mazzaro R, Ibupoto ZH, Vomiero A (2019) A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles. RSC Adv 9:14443–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu C, Cui J, Wang Y, Zheng H, Zhang J, Shu X, Liu J, Zhang Y, Wu Y (2018) Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. Appl Surf Sci 439:11–17

    Article  CAS  Google Scholar 

  15. Wang X, Liao X, Zhang B, Chen S, Zhang M, Mei L, Zhang L, Qiao X, Hong C (2022) Fabrication of a novel electrochemical immunosensor for the sensitive detection of carcinoembryonic antigen using a double signal attenuation strategy. Anal Chim Acta 1232:340455

    Article  CAS  PubMed  Google Scholar 

  16. Chen DN, Wang GQ, Mei LP, Feng JJ, Wang AJ (2023) Dual II-scheme nanosheet-like Bi2S3/Bi2O3/Ag2S heterostructures for ultrasensitive PEC aptasensing of aflatoxin B1 coupled with catalytic signal amplification by dendritic nanorod-like Au@Pd@Pt nanozyme. Biosens Bioelectron 223:115038

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y-C, Chang Y-C, Gloter A, Hsu P-K, Song J-M, Chen S-Y (2021) Synergetic effect of interface and surface on photocatalytic performance of TiO2@ hollow CeO2 core-shell nanostructures. Appl Surf Sci 566:150602

  18. Li F, Feng J, Gao Z, Shi L, Wu D, Du B, Wei Q (2019) Facile synthesis of Cu2O@TiO2-PtCu nanocomposites as a signal amplification strategy for the insulin detection. ACS Appl Mater Interfaces 11:8945–8953

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Liu C, Li J, Luo R, Hu X, Sun X, Shen J, Han W, Wang L (2017) In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst. Appl Catal B 207:316–325

    Article  CAS  Google Scholar 

  20. Guo Y, Chen Y, Hu X, Yao Y, Li Z (2021) Tween modified CuFe2O4 nanoparticles with enhanced supercapacitor performance. Colloids Surf A Physicochem Eng Asp 631:127676

  21. Ren Y, Shi M, Zhang W, Dionysiou DD, Lu J, Shan C, Zhang Y, Lv L, Pan B (2020) Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53(Cu) support: A Mechanistic Investigation. Environ Sci Technol 54:5258–5267

    Article  CAS  PubMed  Google Scholar 

  22. Du X, Fu W, Su P, Su L, Zhang Q, Cai J, Zhou M (2021) Trace FeCu@PC derived from MOFs for ultraefficient heterogeneous electro-Fenton process: Enhanced electron transfer and bimetallic synergy. ACS ES&T Engineering 1:1311–1322

    Article  CAS  Google Scholar 

  23. Koo S, Park OK, Kim J, Han SI, Yoo TY, Lee N, Kim YG, Kim H, Lim C, Bae JS, Yoo J, Kim D, Choi SH, Hyeon T (2022) Enhanced chemodynamic therapy by Cu-Fe peroxide nanoparticles: Tumor microenvironment-mediated synergistic Fenton reaction. ACS Nano 16:2535–2545

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Wang Y, Liu X, Feng R, Zhang N, Fan D, Ding C, Zhao H, Du Y, Wei Q, Ju H (2020) Bifunctional pd-decorated polysulfide nanoparticle of Co9S8 supported on graphene oxide: a new and efficient label-free immunosensor for amyloid β-protein detection. Sensors Actuators B Chem 304:127676

  25. Guo Y, Liu J, Xu Y-T, Zhao B, Wang X, Fu X-Z, Sun R, Wong C-P (2019) In situ redox growth of mesoporous Pd-Cu2O nanoheterostructures for improved glucose oxidation electrocatalysis. Sci Bullet 64:764–773

    Article  CAS  Google Scholar 

  26. Shang Q, Dong H, Liu S, Jiang F, Li Y, Wang S, Liu Q, Li Y, Tang F (2022) Sandwich-type electrochemical immunosensor based on nitrogen-doped porous carbon and nanoporous trimetallic nanozyme PdAgCu for determination of prostate specific antigen. Mikrochim Acta 189:359

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Tang J, Huang L, Li Y, Tang D (2017) In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184:2445–2453

    Article  CAS  Google Scholar 

  28. Jiang S-F, Wang LL, Hu W-F, Tian K, Jiang H (2021) Preparation of flower-like CuFe2O4 by a self-templating method for high-efficient activation of peroxymonosulfate to degrade carbamazepine. Ind Eng Chem Res 60:11045–11055

    Article  CAS  Google Scholar 

  29. Li Z, Guo C, Lyu J, Hu Z, Ge M (2019) Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: Efficiency, stability, mechanism and degradation pathway. J Hazard Mater 373:85–96

    Article  CAS  PubMed  Google Scholar 

  30. Dong H, Liu S, Liu Q, Li Y, Li Y, Zhao Z (2022) A dual-signal output electrochemical immunosensor based on Au-MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosens Bioelectron 195:113648

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H, Cao L, Liu Q, Tang F, Chen L, Wang S, Li Y, Li Y, Li B, Liu H (2022) Label-free electrochemical immunosensor based on PdCuPt/PPY/DCSC as a signal amplification platform for sensitive detection of cardiac troponin I. Sensors B Chem 351:130970

  32. Wu X, Xia F, Nan Z (2020) Facile synthesis of double-mesoporous-shelled hollow spheres of Cu-CuFe2O4/SiO2 composite as excellent Fenton catalyst. Mater Chem Phys 242:122490

  33. Xia F, Shi Q, Nan Z (2020) Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH. Dalton Trans 49:12780–12792

    Article  CAS  PubMed  Google Scholar 

  34. Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J, Keita B, Nadjo L, Zhi L (2012) Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: an enzyme-free electrochemical biosensor for hydrogen peroxide. Small 8:1398–1406

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2021MB048 and ZR2022QB151), and the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyuan Li or Yueyun Li.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 644 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Li, Y., Liu, S. et al. Sandwich-type electrochemical immunosensor based on CuFe2O4-Pd for cardiac troponin I detection. Microchim Acta 190, 249 (2023). https://doi.org/10.1007/s00604-023-05831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05831-x

Keywords

Navigation