Skip to main content
Log in

Highly sensitive and specific resonance Rayleigh scattering detection of esophageal cancer cells via dual-aptamer target binding strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The modification of EGFR aptamer (Apt 1) and HER2 aptamer (Apt 2) with gold nanoparticles (AuNPs) is reported to obtain probe I (Apt 1-AuNPs) and probe II (Apt 2-AuNPs). Taking Eca109, KYSE510, and KYSE150 cells as models, the sandwich scattering system of probe I-cell-probe II was formed by the recognition of tumor markers by the aptamer modified probe, and the resonance Rayleigh scattering (RRS) spectra were investigated. The results showed that the scattering system can be used to quantitatively detect the Eca109 cell lines in the range 5.0×10 to 5.0×105 cells·mL−1 with a detection limit of 15 cells· mL−1.The system can also detect the KYSE510 cell lines in a linear range of 5.0×10 to 5.0×105 cells·mL−1 with a detection limit of 18 cells·mL−1 and the KYSE150 cell lines in a linear range of 3.0×10 to 5.0×105 cells·mL−1 with a detection limit of 12 cells·mL−1. To demonstrate the potential application of the RRS method for real sample analysis, cells were spiked into blank serum samples at concentrations from 1.0×102 to 1.0×105 cells·mL−1. The recovery was between 97.0% and 102.3%, and the RSD was between 1.1% and 4.9%, confirming the feasibility of the proposed method for ESCC cell determination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang C, Wang J, Chen Z, Gao Y, He J (2017) Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: a systematic review. Chin J Cancer 36(1):1–17. https://doi.org/10.1186/s40880-017-0232-5

    Article  CAS  Google Scholar 

  2. Yang L, Yan X, Chen J, Zhan Q, Hua Y, Xu S, Li Z, Wang Z, Dong Y, Zuo D (2021) Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients. Proc Natl Acad Sci U S A 118(11):e2012228118. https://doi.org/10.1073/pnas.2012228118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Xu J, Wan T, Deng H, Li D (2021) High-sensitive detection of small-cell lung cancer cells based on terminal deoxynucleotidyl transferase-mediated extension polymerization aptamer probe. ACS Biomater Sci Eng 7(3):1169–1180. https://doi.org/10.1021/acsbiomaterials.0c01633

    Article  CAS  PubMed  Google Scholar 

  4. Fukuyama S, Kumamoto S, Nagano S, Hitotsuya S, Yasuda K, Kitamura Y, Iwatsuki M, Baba H, Ihara T, Nakanishi Y (2021) Detection of cancer cells in whole blood using a dynamic deformable microfilter and a nucleic acid aptamer. Talanta 228:122239. https://doi.org/10.1016/j.talanta.2021.122239

    Article  CAS  PubMed  Google Scholar 

  5. Hoshi K, Messina MS, Ohata J, Chung CY-S, Chang CJ (2022) A puromycin-dependent activity-based sensing probe for histochemical staining of hydrogen peroxide in cells and animal tissues. Nat Protoc 17(7):1691–1710. https://doi.org/10.1038/s41596-022-00694-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng H, Feng C, Sun Z, Fan X, Xie Y, Gu J, Fan L, Liu G, Li C, Thorne RF (2023) Chloride intracellular channel 1 promotes esophageal squamous cell carcinoma proliferation via mTOR signalling. Transl Oncol 27:101560. https://doi.org/10.1016/j.tranon.2022.101560

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Wang J, Song L, Yu Y, Shi M, Jiang W, Liu X, He X (2022) Downregulation of fibulin-4 inhibits autophagy and promotes the sensitivity of esophageal squamous cell carcinoma cells to apatinib by activating the Akt-mTOR signaling pathway. Thorac Cancer 13(18):2592–2605. https://doi.org/10.1111/1759-7714.14595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuai J-H, Wang Q, Zhang A-J, Zhang J-Y, Chen Z-F, Wu K-K, Hu X-Z (2018) Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J Gastroenterol 24(3):351–359. https://doi.org/10.3748/wjg.v24.i3.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Jiang X, Wang W, Luo S, Guan S, Li W, Situ B, Li B, Zhang Y, Zheng L (2023) A simple and sensitive electrochemical biosensor for circulating tumor cell determination based on dual-toehold accelerated catalytic hairpin assembly. Mikrochim Acta 190(2):65. https://doi.org/10.1007/s00604-023-05649-7

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Zhang D, Lin J, Wu X, Xu X, Akakuru OU, Zhang H, Zhang Z, Xie Y, Wu A (2022) Ultrahigh SERS activity of the TiO2@Ag nanostructure leveraged for accurately detecting CTCs in peripheral blood. Biomater Sci 10(7):1812–1820. https://doi.org/10.1039/d1bm01821c

    Article  CAS  PubMed  Google Scholar 

  11. Fereidouni F, Todd A, Li Y, Chang C-W, Luong K, Rosenberg A, Lee Y-J, Chan JW, Borowsky A, Matsukuma K (2019) Dual-mode emission and transmission microscopy for virtual histochemistry using hematoxylin- and eosin-stained tissue sections. Biomed Opt Express 10(12):6516–6530. https://doi.org/10.1364/boe.10.006516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, Lim JCT, Yeong J, Lim TKH (2020) Overview of multiplex immunohistochemistry/ immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun 40(4):135–153. https://doi.org/10.1002/cac2.12023

    Article  Google Scholar 

  13. Shu X, Sansare S, Jin D, Zeng X, Tong K-Y, Pandey R, Zhou R (2021) Artificial-intelligence-enabled reagent-free imaging hematology analyzer. Adv Intell Syst 3(8):2000277. https://doi.org/10.1002/aisy.202000277

    Article  Google Scholar 

  14. Yang Y, Huang Y, Li C (2019) A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Anal Chim Acta 1055:90–97. https://doi.org/10.1016/j.aca.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Xu G, Guo N, Wang T, Song P, Xia L (2021) In-situ synthesis of methyl cellulose film decorated with silver nanoparticles as a flexible surface-enhanced Raman substrate for the rapid detection of pesticide residues in fruits and vegetables. Materials 14(19):5750. https://doi.org/10.3390/ma14195750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, He S, Dong G, Sheng C (2022) Nucleic-acid-based targeted degradation in drug discovery. J Med Chem 65(15):10217–10232. https://doi.org/10.1021/acs.jmedchem.2c00875

    Article  CAS  PubMed  Google Scholar 

  17. Fan R, Tao X, Zhai X, Zhu Y, Li Y, Chen Y, Dong D, Yang S, Lv L (2023) Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother 161:114444. https://doi.org/10.1016/j.biopha.2023.114444

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Ren X, Zhao J, Lou X (2021) PD-L1 aptamer isolation via Modular-SELEX and its applications in cancer cell detection and tumor tissue section imaging. Analyst 146(9):2910–2918. https://doi.org/10.1039/d1an00182e

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B (2021) Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 54(9):e13105. https://doi.org/10.1111/cpr.13105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Wang J, Zhang X, Chang H, Wei W (2018) Highly selective detection of epidermal growth factor receptor by multifunctional gold-nanoparticle-based resonance Rayleigh scattering method. Sens. Actuators B Chem 273:1300–1306. https://doi.org/10.1016/j.snb.2018.07.046

    Article  CAS  Google Scholar 

  21. Li J, Yang Y, Wang J, Zhang B, Chang H, Wei W (2018) Resonance Rayleigh scattering detection of the epidermal growth factor receptor based on an aptamer-functionalized gold-nanoparticle probe. Anal Methods 10(24):2910–2916. https://doi.org/10.1039/c8ay00860d

    Article  CAS  Google Scholar 

  22. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E-W, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed Engl 51(42):10472–10498. https://doi.org/10.1002/anie.201201114

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L (2022) Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 195:113661. https://doi.org/10.1016/j.bios.2021.113661

    Article  CAS  PubMed  Google Scholar 

  24. Hedner C, Borg D, Nodin B, Karnevi E, Jirstrom K, Eberhard J (2018) Expression and prognostic significance of human epidermal growth factor receptors 1, 2 and 3 in oesophageal and gastric adenocarcinomas preneoadjuvant and postneoadjuvant treatment. J Clin Pathol 71(5):451–462. https://doi.org/10.1136/jclinpath-2017-204774

    Article  CAS  PubMed  Google Scholar 

  25. Delektorskaia VV, Chemeris GI, Kononets PV, Grigorchuk AI (2010) Immunohistochemical study of epidermal growth factor receptor expression in esophageal squamous cell carcinoma. Arkh Patol 72(5):3–6

    PubMed  Google Scholar 

  26. Wang X, Niu H, Fan Q, Lu P, Ma C, Liu W, Liu Y, Li W, Hu S, Ling Y (2016) Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma. Oncotarget 7(17):24744–24751. https://doi.org/10.18632/oncotarget.8271

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhan N, Dong W-G, Tang Y-F, Wang Z-S, C-l X (2012) Analysis of HER2 gene amplification and protein expression in esophageal squamous cell carcinoma. Med Oncol 29(2):933–940. https://doi.org/10.1007/s12032-011-9850-y

    Article  CAS  PubMed  Google Scholar 

  28. Hou W, Qin X, Zhu X, Fei M, Liu P, Liu L, Moon H, Zhang P, Greshock J, Bachman KE (2013) Lapatinib inhibits the growth of esophageal squamous cell carcinoma and synergistically interacts with 5-fluorouracil in patient-derived xenograft models. Oncol Rep 30(2):707–714. https://doi.org/10.3892/or.2013.2500

    Article  CAS  PubMed  Google Scholar 

  29. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  30. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79(11):4215–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  31. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453. https://doi.org/10.1038/nmat2162

    Article  CAS  PubMed  Google Scholar 

  32. D'Agata R, Palladino P, Spoto G (2017) Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation. Beilstein J Nanotechnol 8:1–11. https://doi.org/10.3762/bjnano.8.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gulicovski JJ, Cerovic LS, Milonjic SK, Popovic IG (2008) Adsorption of itaconic acid from aqueous solutions onto alumina. J Serb Chem Soc 73(8-9):825–834. https://doi.org/10.2298/jsc0809825g

    Article  CAS  Google Scholar 

  34. Jiang Y, Zhao H, Zhu N, Lin Y, Yu P, Mao L (2008) A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem Int Ed Engl 47(45):8601–8604. https://doi.org/10.1002/anie.200804066

    Article  CAS  PubMed  Google Scholar 

  35. Häussling L, Michel B, Ringsdorf H, Rohrer H (1991) Direct observation of streptavidin specifically adsorbed on biotin-functionalized self-assembled monolayers with the scanning tunneling microscope. Angew Chem Int Ed Engl 30:569–572. https://doi.org/10.1002/anie.199105691

    Article  Google Scholar 

  36. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887):85–88. https://doi.org/10.1126/science.2911722

    Article  CAS  PubMed  Google Scholar 

  37. Yeo ELL, Chua AJS, Parthasarathy K, Yeo HY, Ng ML, Kah JCY (2015) Understanding aggregation-based assays: nature of protein corona and number of epitopes on antigen matters. RSC Adv 5:14982–14993. https://doi.org/10.1039/c4ra12089b

    Article  CAS  Google Scholar 

  38. El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. https://doi.org/10.1021/nl050074e

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y-F, Lin Y-W, Lin Z-H, Chang H-T (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783. https://doi.org/10.1007/s11051-008-9424-x

    Article  CAS  Google Scholar 

  40. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821. https://doi.org/10.1021/nl072471q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Great thanks for the support from the Fundamental Research Program of Shanxi Province (No. 20210302124325), Research Project of Health Commission of Shanxi Province (No. 2022112), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0660), and the Doctoral Scientific Research Foundation of Changzhi Medical College (No.BS201916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Ma, D. et al. Highly sensitive and specific resonance Rayleigh scattering detection of esophageal cancer cells via dual-aptamer target binding strategy. Microchim Acta 190, 248 (2023). https://doi.org/10.1007/s00604-023-05828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05828-6

Keywords

Navigation