Skip to main content
Log in

Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly structured fluorometric bioassay has been proposed for screening Staphylococcus aureus (S. aureus). The study exploits (i) the spectral attributes of the hexagonal NaYF4:Yb,Er upconversion nanoparticle (UCNP)-coated 3-aminopropyl)triethoxysilane; (ii) the intrinsic non-fluorescent quenching features of the highly stable dark blackberry (BBQ®-650) receptor; (iii) the aptamer (Apt-) biorecognition and binding affinity, and (iv) the complementary DNA hybridizer-linkage efficacy. The principle relied on the excited state energy transfer between the donor Apt-labeled NH2-UCNPs at the 3′ end, and cDNA-grafted BBQ®-650 at the 5′ end, as the effective receptors. The donor moieties in proximity (< 10.0 nm) trigger hybridization with the cDNA-grafted dark BBQ®-650, as the receptors of energy from the 2F5/2 level of Yb3+ ions to initiate the Förster resonance energy transfer pathway. This was confirmed by the decline in the excited-state lifetimes from 223.52 μs (τ1) to 179.26 μs (τ2). The existence of the target S. aureus in the bioassay attracts the Apt- resulting in the detachment of the acceptor, and disintegration of the complex configuration via conformation reversal. The re-activated fluorescence monitored at λex/em = 980/652 nm, as a function of the logarithmic concentration of S. aureus (42 to 4.2 × 108 CFU mL−1), yielded an ultra-low detection response of 2.0 CFU mL−1. The bioassay screening of S. aureus in real samples revealed satisfactory recoveries (92.44–107.82%) and validation results (p > 0.05). Hence, the comprehensive Apt-labeled NH2-UCNPs-cDNA-grafted dark BBQ®-650 bioassay offered fast and precise S. aureus screening in food and environmental settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu Y, Wei Y, Cao Y, Zhu D, Yu Y, Guo M (2018) Ultrasensitive electrochemiluminescence detection of Staphylococcus aureus via enzyme-free branched DNA signal amplification probe. Biosens Bioelectron 117:830–837

    Article  CAS  PubMed  Google Scholar 

  2. Shahdordizadeh M, Taghdisi SM, Ansari N, Langroodi FA, Abnous K, Ramezani M (2017) Aptamer based biosensors for detection of Staphylococcus aureus. Sens Actuators B: Chem 241:619–635

    Article  CAS  Google Scholar 

  3. Le Loir Y, Baron F, Gautier M (2003) [i] Staphylococcus aureus [/i] and food poisoning. Genet Mol Res: GMR 2:63–76

    PubMed  Google Scholar 

  4. Baptista I, Rocha SM, Cunha A, Saraiva JA, Almeida A (2016) Inactivation of Staphylococcus aureus by high pressure processing: An overview. IFSET 36:128–149

    CAS  Google Scholar 

  5. Wu Z, Huang C, Dong Y, Zhao B, Chen Y (2022) Gold core@ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Cont 137:108916

    Article  CAS  Google Scholar 

  6. Ren L, Hong F, Chen Y (2022) Enzyme-free catalytic hairpin assembly reaction-mediated micro-orifice resistance assay for the ultrasensitive and low-cost detection of Listeria monocytogenes. Biosens Bioelectron 214:114490

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Wu L, Wang Z, Tu K, Pan L, Chen Y (2021) A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn (VII)/Mn (II) conversion. Food Cont 125:107959

    Article  CAS  Google Scholar 

  8. Pires SM, Desta BN, Mughini-Gras L, Mmbaga BT, Fayemi OE, Salvador EM, Gobena T, Majowicz SE, Hald T, Hoejskov PS (2021) Burden of foodborne diseases: Think global, act local. Curr Opin Food Sci 39:152–159

    Article  PubMed  PubMed Central  Google Scholar 

  9. Farooq U, Ullah MW, Yang Q, Aziz A, Xu J, Zhou L, Wang S (2020) High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens Bioelectron 157:112163

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen TT-Q, Kim ER, Gu MB (2022) A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus. Biosens Bioelectron 198:113835

    Article  CAS  PubMed  Google Scholar 

  11. Zhu S, Tang Y, Shi B, Zou W, Wang X, Wang C, Wu Y (2021) Oligonucleotide-mediated the oxidase-mimicking activity of Mn3O4 nanoparticles as a novel colorimetric aptasensor for ultrasensitive and selective detection of Staphylococcus aureus in food. Sens Actuators B: Chem 349:130809

    Article  CAS  Google Scholar 

  12. Wei W, Haruna SA, Zhao, Y, Li H, Chen Q (2022) Surface-enhanced Raman scattering biosensor-based sandwich-type for facile and sensitive detection of Staphylococcus aureus. Sens Actuators B: Chem 364:131929

  13. Choopara I, Suea-Ngam A, Teethaisong Y, Howes PD, Schmelcher M, Leelahavanichkul A, Thunyaharn S, Wongsawaeng D, DeMello AJ, Dean D (2021) Fluorometric paper-based, loop-mediated isothermal amplification devices for quantitative point-of-care detection of methicillin-resistant staphylococcus aureus (MRSA). ACS Sens 6:742–751

    Article  CAS  PubMed  Google Scholar 

  14. Ouyang Q, Yang Y, Ali S, Wang L, Li H, Chen Q (2021) Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Spectrochim Acta A 255:119734

    Article  CAS  Google Scholar 

  15. Desai AS, Chauhan VM, Johnston AP, Esler T, Aylott JW (2014) Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement. Front Physiol 4:401

    Article  PubMed  PubMed Central  Google Scholar 

  16. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174

    Article  CAS  PubMed  Google Scholar 

  17. Hu K, Yu X, Chen J, Tang J, Wang L, Li Y, Tang C (2020) Production of characteristic volatile markers and their relation to Staphylococcus aureus growth status in pork. Meat Sci 160:107956

    Article  CAS  PubMed  Google Scholar 

  18. Wang M, Abbineni G, Clevenger A, Mao C, Xu S (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med 7:710–729

    Article  CAS  Google Scholar 

  19. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200

    Article  CAS  PubMed  Google Scholar 

  21. Liu R, Ali S, Haruna SA, Ouyang Q, Li H, Chen Q (2022) Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Cont 131:108419

    Article  CAS  Google Scholar 

  22. Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q (2021) Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in Meat. J Agr Food Chem 69:9947–9956

    Article  CAS  Google Scholar 

  23. Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC (2021) Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 146:13–32

    Article  CAS  PubMed  Google Scholar 

  24. Jin B, Li Z, Zhao G, Ji J, Chen J, Yang Y, Xu R (2022) Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Anal Chim Acta 1192:339388

    Article  CAS  PubMed  Google Scholar 

  25. Zhang B, Li H, Pan W, Chen Q, Ouyang Q, Zhao J (2017) Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food Anal Methods 10:2036–2045

    Article  Google Scholar 

  26. Chen M, Song Y, Han L, Zhou D, Wang Y, Pan L, Tu K (2022) An ultrasensitive upconversion fluorescence aptasensor based on graphene oxide release and magnetic separation for Staphylococcus aureus detection. Food Anal Methods 15:2791–2800

    Article  Google Scholar 

  27. Yüce M, Kurt H, Hussain B, Ow-Yang CW, Budak H (2018) Exploiting Stokes and anti-Stokes type emission profiles of aptamer-functionalized luminescent nanoprobes for multiplex sensing applications. ChemistrySelect 3:5814–5823

    Article  Google Scholar 

  28. He H, Sun DW, Wu Z, Pu H, Wei Q (2022) On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci Technol 119:243–256

    Article  CAS  Google Scholar 

  29. Liu R, Zhang Y, Ali S, Haruna SA, He P, Li H, Ouyang Q, Chen Q (2021) Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Cont 122:107808

    Article  CAS  Google Scholar 

  30. Crisalli P, Kool ET (2011) Multi-path quenchers: efficient quenching of common fluorophores. Bioconj Chem 22:2345–2354

    Article  CAS  Google Scholar 

  31. Marras SA, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nuc Acids Res 30:e122–e122

    Article  Google Scholar 

  32. Peng X, Chen H, Draney DR, Volcheck W, Schutz-Geschwender A, Olive DM (2009) A nonfluorescent, broad-range quencher dye for Förster resonance energy transfer assays. Analytical Biochem 388:220–228

    Article  CAS  Google Scholar 

  33. Chevalier A, Renard PY, Romieu A (2014) Straightforward synthesis of bioconjugatable azo dyes. Part 2: Black Hole Quencher-2 (BHQ-2) and BlackBerry Quencher 650 (BBQ-650) scaffolds. Tetrahed Lett 55:6764–6768

    Article  CAS  Google Scholar 

  34. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nuc Acids Res 37:4621–4628

    Article  CAS  Google Scholar 

  35. Xu Y, He P, Ahmad W, Hassan MM, Ali S, Li H, Chen Q (2022) Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens Bioelectron 209:114240

    Article  CAS  PubMed  Google Scholar 

  36. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Wang Y, Li J, Huo B, Huang H, Bai J, Peng Y, Li S, Han D, Ren S (2021) A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal Chim Acta 1160:338450

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z, Xu E, Jin Z, Irudayaraj J (2018) An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem 249:136–142

    Article  CAS  PubMed  Google Scholar 

  39. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L (2019) Dual-emission color-controllable nanoparticle based molecular imprinting ratiometric fluorescence sensor for the visual detection of Brilliant Blue. Sens Actuators B: Chem 284:428–436

    Article  CAS  Google Scholar 

  40. Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533

    Article  CAS  PubMed  Google Scholar 

  41. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44:1608–1634

    Article  CAS  PubMed  Google Scholar 

  42. Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, Vaculovicova M (2020) Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem 321:126673

    Article  CAS  PubMed  Google Scholar 

  43. Hu Y, Sun Y, Gu J, Yang F, Wu S, Zhang C, Ji X, Lv H, Muyldermans S, Wang S (2021) Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chem 353:129481

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Huang C, Qiu C, Wang Z, Cheng M, Zhang Y, Qiao Y, Guan Y, Feng X, Sun C (2022) Rapid and sensitive detection of Staphylococcus aureus using biolayer interferometry technology combined with phage lysin LysGH15. Biosens Bioelectron 198:113799

    Article  CAS  PubMed  Google Scholar 

  45. Chen W, Chen Z, Lai Q, Zhang Y, Long M, Liang B, Liu Z (2022) Specific and ultrasensitive detection of Staphylococcus aureus with a catechol-chitosan redox capacitor based electrochemical aptasensor. J Electroanal Chem 916:116357

    Article  CAS  Google Scholar 

  46. Zhang Y, Tan W, Zhang Y, Mao H, Shi S, Duan L, Wang H, Yu J (2019) Ultrasensitive and selective detection of Staphylococcus aureus using a novel IgY-based colorimetric platform. Biosens Bioelectron 142:111570

    Article  CAS  PubMed  Google Scholar 

  47. Xie B, Wang ZP, Zhang R, Zhang Z, He Y (2022) A SERS aptasensor based on porous Au-NC nanoballoons for Staphylococcus aureus detection. Anal Chim Acta 1190:339175

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from “entrepreneurship and innovation project of Jiangsu province, China (No: JSSCBS20210930).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Wang, L., Zareef, M. et al. Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system. Microchim Acta 190, 250 (2023). https://doi.org/10.1007/s00604-023-05823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05823-x

Keywords

Navigation