Skip to main content
Log in

A novel “on–off” SERS nanoprobe based on sulfonated cellulose nanofiber-Ag composite for selective determination of NADH in human serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel S-CNF-based nanocomposite was created using sulfonated cellulose nanofiber (S-CNF) to enable the detection of NADH in serum by surface-enhanced Raman spectroscopy (SERS). The numerous hydroxyl and sulfonic acid groups on the S-CNF surface absorbed silver ions and converted them to silver seeds, which formed the load fulcrum. After adding a reducing agent, silver nanoparticles (Ag NPs) were firmly adhered to the S-CNF surface to form stable 1D “hot spots.” The S-CNF-Ag NP substrate demonstrated outstanding SERS performance, including good uniformity with an RSD of 6.88% and an enhancement factor (EF) of 1.23 × 107. Owing to the anionic charge repulsion effect, the S-CNF-Ag NP substrate still maintains remarkable dispersion stability after 12 months of preservation. Finally, S-CNF-Ag NPs’ surface was modified with 4-mercaptophenol (4-MP), a special redox Raman signal molecule, to detect reduced nicotinamide adenine dinucleotide (NADH). The results showed that the detection limit (LOD) of NADH was 0.75 μM; a good linear relationship (R2 = 0.993) was established in the concentration range 10−6 – 10−2 M. The SERS nanoprobe enabled rapid detection of NADH in human serum without any complicated sample pretreatment and provides a new potential to detect biomarkers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao Y, Wei K, Kong F et al (2019) Dicyanoisophorone-based near-infrared-emission fluorescent probe for detecting NAD(P)H in living cells and in vivo. Anal Chem 91(2):1368–1374

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Yang Y, Loscalzo J (2014) Chapter eighteen — real-time assessment of the metabolic profile of living cells with genetically encoded NADH sensors. In: Galluzzi L, Kroemer G (eds) Methods in enzymology. Academic Press, pp 349–367

  3. Passarella S, Schurr A, Portincasa P (2021) Mitochondrial transport in glycolysis and gluconeogenesis: achievements and perspectives. Int J Mol Sci 22:12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casaril AM, Katsalifis A, Schmidt RM et al (2022) Activated glia cells cause bioenergetic impairment of neurons that can be rescued by knock-down of the mitochondrial calcium uniporter. Biochem Biophys Res Commun 608:45–51

    Article  CAS  PubMed  Google Scholar 

  5. Afzal M, Shafeeq S, Kuipers OP (2018) NADH-mediated gene expression in Streptococcus pneumoniae and role of Rex as a transcriptional repressor of the Rex-Regulon. Front Microbiol 9

  6. Fu Y-H, Wang K, Shen G-B et al (2022) Quantitative comparison of the actual antioxidant activity of Vitamin C, Vitamin E, and NADH. J Phys Org Chem 35(9):e4358

    Article  CAS  Google Scholar 

  7. Chini C S, Peclat T R, Gomez L S et al (2022) Dihydronicotinamide riboside is a potent NAD+ precursor promoting a pro-inflammatory phenotype in macrophages. Front Immunol 13

  8. Wang H-W, Wei Y-H, Guo H-W (2009) Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death. Anticancer Agents Med Chem 9(9):1012–1017

    Article  CAS  PubMed  Google Scholar 

  9. Weng G, Zhao X, Zhao J et al (2019) Nanoplasmonic sensing of NADH by inhibiting the oxidative etching of gold nanorods. Sens Actuators, B Chem 299:126982

    Article  CAS  Google Scholar 

  10. Manusha P, Yadav S, Satija J et al (2021) Designing electrochemical NADH sensor using silver nanoparticles/phenothiazine nanohybrid and investigation on the shape dependent sensing behavior. Sens Actuators, B Chem 347:130649

    Article  CAS  Google Scholar 

  11. Podder A, Thirumalaivasan N, Chao YK et al (2020) Two-photon active fluorescent indicator for detecting NADH dynamics in live cells and tumor tissue. Sens Actuators, B Chem 324:128637

    Article  CAS  Google Scholar 

  12. Ying W, Alano CC, Garnier P et al (2005) NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 79(1–2):216–223

    Article  CAS  PubMed  Google Scholar 

  13. Putt KS, Hergenrother PJ (2004) An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD+: application to the high-throughput screening of small molecules as potential inhibitors. Anal Biochem 326(1):78–86

    Article  CAS  PubMed  Google Scholar 

  14. Zhao W, Tian M, Nie R et al (2012) Online enzyme discrimination and determination of substrate enantiomers based on electrophoretically mediated microanalysis. Anal Chem 84(15):6701–6706

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Liu X, Yin C et al (2019) A dual-signal output ratiometric electrochemiluminescent sensor for NADH detection. Analyst 144(17):5215–5222

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Tang H, Xie Q et al (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52(24):6630–6637

    Article  CAS  Google Scholar 

  17. Fu X, Deja S, Kucejova B et al (2019) Targeted determination of tissue energy status by LC-MS/MS. Anal Chem 91(9):5881–5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Omar FS, Duraisamy N, Ramesh K et al (2016) Conducting polymer and its composite materials based electrochemical sensor for nicotinamide adenine dinucleotide (NADH). Biosens Bioelectron 79:763–775

    Article  CAS  PubMed  Google Scholar 

  19. Liao W, Wang Q, Hao J et al (2023) Molecularly imprinted 3D SERS sensor with inorganic frameworks for specific and recyclable SERS sensing application. Microchim Acta 190(2):50

    Article  CAS  Google Scholar 

  20. Masson J-F (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2(1):16–30

    Article  CAS  PubMed  Google Scholar 

  21. Lussier F, Brulé T, Vishwakarma M et al (2016) Dynamic-SERS Optophysiology: a nanosensor for monitoring cell secretion events. Nano Lett 16(6):3866–3871

    Article  CAS  PubMed  Google Scholar 

  22. Yue KT, Martin CL, Chen D et al (1986) Raman spectroscopy of oxidized and reduced nicotinamide adenine dinucleotides. Biochemistry 25(17):4941–4947

    Article  CAS  PubMed  Google Scholar 

  23. Teng H, Lv M, Liu L et al (2017) Quantitative detection of NADH using a novel enzyme-assisted method based on surface-enhanced Raman scattering. Sensors 17:788

    Article  PubMed  PubMed Central  Google Scholar 

  24. Asgari S, Sun L, Lin J et al (2020) Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchim Acta 187(7):390

    Article  CAS  Google Scholar 

  25. Chen J, Huang M, Kong L et al (2019) Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohyd Polym 205:596–600

    Article  CAS  Google Scholar 

  26. Zhang Q, Zhang Y, Chen H et al (2022) One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohyd Polym 284:119140

    Article  CAS  Google Scholar 

  27. Chan MY, Leng W, Vikesland PJ (2018) Surface-enhanced Raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19(1):24–28

    Article  CAS  PubMed  Google Scholar 

  28. Shi T, Liang P, Zhang X et al (2020) Synergistic enhancement effect of MoO3@Ag hybrid nanostructures for boosting selective detection sensitivity. Spectrochim Acta Part A Mol Biomol Spectrosc 241:118611

    Article  CAS  Google Scholar 

  29. Jain P, Chakma B, Patra S et al (2017) Hairpin stabilized fluorescent silver nanoclusters for quantitative detection of NAD+ and monitoring NAD+/NADH based enzymatic reactions. Anal Chim Acta 956:48–56

    Article  CAS  PubMed  Google Scholar 

  30. Teymourian H, Salimi A, Hallaj R (2012) Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron 33(1):60–68

    Article  CAS  PubMed  Google Scholar 

  31. Valentini F, Salis A, Curulli A et al (2004) Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Anal Chem 76(11):3244–3248

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Wang J, Geng Y et al (2021) Single-cell oxidative stress events revealed by a renewable SERS nanotip. ACS Sensors 6(4):1663–1670

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We received financial support from the Innovation and Entrepreneurship Project for University Students in Fujian Province (cxxl-2022213); Program for Industry University Cooperation Project of Fujian Province (2020Y4006); Guiding Project (No. 2020Y0019) supported by Fujian Provincial Department of Science and Technology, Industry-University Cooperation Project of Fujian Provincial Department of Science and Technology (2020N5006); Fushimei Agricultural and Rural Maker Space (Minke xing [2019] No. 2); and Program for Innovative Research Team in Science and Technology in Fujian Province University, National Natural Science Foundation of China (61975031).

Author information

Authors and Affiliations

Authors

Contributions

Wenxi Wang: collected the experimental samples and perform the experiments, formal analysis, analyzed the experimental data, writing — review and editing, writing — original draft, data curation. Shuyan Ruan: are co-first authors and contributed equally to this work, collected experimental samples and performed the experiments, formal analysis, analyzed the experimental data. Zhixiong Su: analyzed the experimental data. Peipei Xu: formal analysis. Yujia Chen: formal analysis. Zheng Lin: resources, supervision, writing — review and editing. Jingbo Chen: methodology. Yudong Lu: supervision, funding acquisition, resources.

Corresponding authors

Correspondence to Zheng Lin, Jingbo Chen or Yudong Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenxi Wang and Shuyan Ruan contributed equally to this work and should be considered co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34920 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ruan, S., Su, Z. et al. A novel “on–off” SERS nanoprobe based on sulfonated cellulose nanofiber-Ag composite for selective determination of NADH in human serum. Microchim Acta 190, 254 (2023). https://doi.org/10.1007/s00604-023-05809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05809-9

Keywords

Navigation