Skip to main content
Log in

In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (β-CD-COF@SiO2, CTpBD@SiO2, and MDI-β-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m−1 for ethyl mandelate), low column backpressure (5–9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar N, Sharma U, Singh C, Singh B (2012) Thalidomide: chemistry, therapeutic potential and oxidative stress induced teratogenicity. Curr Top Med Chem 12(13):1436–1455. https://doi.org/10.2174/156802612801784407

    Article  CAS  PubMed  Google Scholar 

  2. Surivet JP, Vatèle JM (1999) Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron 55(45):13011–13028. https://doi.org/10.1016/S0040-4020(99)00794-2

    Article  CAS  Google Scholar 

  3. Nie J, Wang YG, Gao XF, OuYang XK, Yang LY, Yu D, Wu WJ, Xu HP (2016) Pharmacokinetic study of ofloxacin enantiomers in Pagrosomus major by chiral HPLC. Biomed Chromatogr 30:426–431. https://doi.org/10.1002/bmc.3565

    Article  CAS  PubMed  Google Scholar 

  4. Awadallah B, Schmidt PC, Wahl MA (2003) Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies. Chromatogr A 988:135–143. https://doi.org/10.1016/S0021-9673(02)02015-0

    Article  CAS  Google Scholar 

  5. Fuchs I, Fechler N, Antonietti M, Mastai Y (2016) Enantioselective nanoporous carbon based on chiral ionic liquids. Angew Chem Int Ed 55(1):408–412. https://doi.org/10.1002/anie.201505922

    Article  CAS  Google Scholar 

  6. Sierra I, Pérez-Quintanilla D, Morante S, Gañán J (2014) Novel supports in chiral stationary phase development for liquid chromatography. Preparation, characterization and application of ordered mesoporous silica particles. J Chromatogr A 1363:27–40. https://doi.org/10.1016/j.chroma.2014.06.063

    Article  CAS  PubMed  Google Scholar 

  7. Förster S, Roos J, Effenberger F, Wajant H, Sprauer A (1996) The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)-cyanohydrins. Angew Chem Int Ed 35(4):437–439. https://doi.org/10.1002/anie.199604371

    Article  Google Scholar 

  8. Tarafder A, Miller L (2021) Chiral chromatography method screening strategies: past, present and future. J Chromatogr A 1638:461878. https://doi.org/10.1016/j.chroma.2021.461878

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JH, Xie SM, Yuan LM (2022) Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 45(1):51–77. https://doi.org/10.1002/jssc.202100593

    Article  CAS  PubMed  Google Scholar 

  10. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170. https://doi.org/10.1126/science.1120411

    Article  CAS  PubMed  Google Scholar 

  11. Zhang K, Cai SL, Yan YL, He ZH, Lin HM, Huang XL, Zheng SR, Fan J, Zhang WG (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109. https://doi.org/10.1016/j.chroma.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Zhao WJ, Hu K, Hu CC, Wang XY, Yu AJ, Zhang SS (2017) Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 1487:83–88. https://doi.org/10.1016/j.chroma.2016.12.082

    Article  CAS  PubMed  Google Scholar 

  13. Zhong C, Chen BB, He M, Hu B (2017) Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters. J Chromatogr A 1483:40–47. https://doi.org/10.1016/j.chroma.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  14. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453. https://doi.org/10.1002/anie.200705710

    Article  CAS  Google Scholar 

  15. Wang KW, Yang LM, Wang X, Guo LP, Cheng G, Jin SB, Tan BE, Cooper A (2017) Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Edit 56(45):14149–14153. https://doi.org/10.1002/anie.201708548

    Article  CAS  Google Scholar 

  16. Ren SJ, Bojdys MJ, Dawson R, Laybourn A, Khimyak ZY, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24(17):2357–2361. https://doi.org/10.1002/adma.201200751

    Article  CAS  PubMed  Google Scholar 

  17. Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A (2013) Covalent triazine frameworks prepared from 1, 3, 5-tricyanobenzene. Chem Mater 25(9):1542–1548. https://doi.org/10.1021/cm303751n

    Article  CAS  Google Scholar 

  18. Jena HS, Krishnaraj C, Schmidt J, Leus K, Van Hecke K, Van Der Voort P (2020) Effect of building block transformation in covalent triazine-based frameworks for enhanced CO2 uptake and metal-free heterogeneous catalysis. Chem Eur J 26(7):1548–1557. https://doi.org/10.1002/chem.201903926

    Article  CAS  PubMed  Google Scholar 

  19. Chen YL, Xia L, Lu ZC, Li GK, Hu YL (2021) In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation. J Chromatogr A 1654:462475. https://doi.org/10.1016/j.chroma.2021.462475

    Article  CAS  PubMed  Google Scholar 

  20. Xu NY, Guo P, Chen JK, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral core-shell microspheres β-CD-COF@SiO2 used for HPLC enantioseparation. Talanta 235:122754. https://doi.org/10.1016/j.talanta.2021.122754

    Article  CAS  PubMed  Google Scholar 

  21. Chen JK, Xu NY, Guo P, Wang BJ, Zhang JH, Xie SM, Yuan LM (2021) A chiral metal-organic framework core-shell microspheres composite for high-performance liquid chromatography enantioseparation. J Sep Sci 44(21):3976–3985. https://doi.org/10.1002/jssc.202100557

    Article  CAS  PubMed  Google Scholar 

  22. Yuan BY, Li L, Yu YY, Xu NY, Fu N, Zhang JH, Zhang M, Wang BJ, Xie SM, Yuan LM (2021) Chiral metal-organic framework [Co2(D-cam)2(TMDPy)]@SiO2 core-shell microspheres for HPLC separation. Microchem J 161:105815. https://doi.org/10.1016/j.microc.2020.105815

    Article  CAS  Google Scholar 

  23. Guo P, Yuan BY, Yu YY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188(9):1–10. https://doi.org/10.1007/s00604-021-04954-3

    Article  CAS  Google Scholar 

  24. Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7(1):12104. https://doi.org/10.1038/ncomms12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang SY, Zhou J, Li HB (2022) Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angewandte Chemie 61(27):e202204012. https://doi.org/10.1002/ange.202204012

    Article  CAS  PubMed  Google Scholar 

  26. Wang GX, Lv WJ, Pan CJ, Chen HL, Chen XG (2022) Synthesis of a novel chiral DA-TD covalent organic framework for open-tubular capillary electrochromatography enantioseparation. Chrm Commun 58(3):403–406. https://doi.org/10.1039/D1CC06420G

    Article  CAS  Google Scholar 

  27. Ran XY, Guo P, Liu CF, Zhu YL, Liu C, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) Chiral covalent-organic framework MDI-β-CD-modified COF@SiO2 core–shell composite for HPLC enantioseparation. Molecules 28(2):662. https://doi.org/10.3390/molecules28020662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren SZ, Zhu D, Zhu XH, Wang B, Yang YS, Sun WX, Wang XM, Lv PC, Wang ZC, Zhu HL (2019) Nanoscale metal-organic-frameworks coated by biodegradable organosilica for pH and redox dual responsive drug release and high-performance anticancer therapy. ACS Appl Mater Inter 11(23):20678–20688. https://doi.org/10.1021/acsami.9b04236

    Article  CAS  Google Scholar 

  29. Kuang X, Ma Y, Su H, Zhang J, Dong YB, Tang B (2014) High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Anal Chem 86(2):1277–1281. https://doi.org/10.1021/ac403674p

    Article  CAS  PubMed  Google Scholar 

  30. Xie SM, Hu C, Li L, Zhang JH, Fu N, Wang BJ, Yuan LM (2018) Homochiral metal-organic framework for HPLC separation of enantiomers. Microchem J 139:487–491. https://doi.org/10.1016/j.microc.2018.03.035

    Article  CAS  Google Scholar 

  31. Zhang M, Zhang JH, Zhang Y, Wang BJ, Xie SM, Yuan LM (2014) Chromatographic study on the high performance separation ability of a homochiral [Cu2(d-Cam)2(4, 4-bpy)]n based-column by using racemates and positional isomers as test probes. J Chromatogr A 1325:163–170. https://doi.org/10.1016/j.chroma.2013.12.023

    Article  CAS  PubMed  Google Scholar 

  32. Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels BF, Denayer JFM (2010) De Vos DE (2010) Silica-MOF composites as a stationary phase in liquid chromatography. Eur J Inorg Chem 24:3735–3738. https://doi.org/10.1002/ejic.201000494

    Article  CAS  Google Scholar 

  33. Yu YY, Xu NY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2020) Chiral metal-organic framework D-His-ZIF-8@SiO2 core-shell microspheres used for HPLC enantioseparations. ACS Appl Mater Inter 12(14):16903–16911. https://doi.org/10.1021/acsami.0c01023

    Article  CAS  Google Scholar 

  34. Xie SM, Zhang JH, Fu N, Wang BJ, Chen L, Yuan LM (2016) A chiral porous organic cage for molecular recognition using gas chromatography. Anal Chim Acta 903:156–163. https://doi.org/10.1016/j.aca.2015.11.030

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (nos. 21964021 and 22064020) and the Applied Basic Research Foundation of Yunnan Province (nos. 202201AT070029 and 202101AT070101).

Author information

Authors and Affiliations

Authors

Contributions

All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun-Hui Zhang or Sheng-Ming Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 20080 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Guo, P., Lu, YR. et al. In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation. Microchim Acta 190, 238 (2023). https://doi.org/10.1007/s00604-023-05806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05806-y

Keywords

Navigation