Skip to main content

Advertisement

Log in

Mulberry-like porous-hollow AuPtAg nanorods for electrochemical immunosensing of biomarker myoglobin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mulberry-like AuPtAg porous hollow nanorods (PHNR) were facilely synthesized for the first time via a wet chemical method, where Au nanorods (Au NR) behaved as sacrificed template. The anisotropic oriented growth and etching process are involved in this synthesis. Their structural and electronic characteristics were scrutinously examined by TEM, EDS, XPS, and electrochemical techniques. The AuPtAg PHNR provided a large specific surface area and exposed a large number of active sites, showing highly enhanced catalytic activity. On this foundation, a label-free electrochemical immunosensor was developed for myoglobin (Myo) assay based on the AuPtAg PHNR. Further, the built sensor exhibited fast and ultrasensitive responses in a linear range of 0.0001 ~ 1000 ng mL−1 with a low limit of detection (LOD = 0.46 pg mL−1, S/N = 3), and enabled efficient application to human serum samples with acceptable results. Consequently, the developed AuPtAg PHNR–based platform has a broad prospect in practically monitoring Myo and other biomarkers in clinics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore Mensah Y, Elkind MSV, Evenson KR, Eze Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145:e153–e639

    PubMed  Google Scholar 

  2. White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372:570–584

    CAS  PubMed  Google Scholar 

  3. Alhashemi JA (2006) Diagnostic accuracy of a bedside qualitative immunochromatographic test for acute myocardial infarction. Am J Emerg Med 24:149–155

    PubMed  Google Scholar 

  4. Li C, Li J, Yang X, Gao L, Jing L, Ma X (2017) A label-free electrochemical aptasensor for sensitive myoglobin detection in meat. Sens Actuators B Chem 242:1239–1245

    CAS  Google Scholar 

  5. Shen J, Zhang L, Yuan J, Zhu Y, Cheng H, Zeng Y, Wang J, You X, Yang C, Qu X, Chen H (2021) Digital microfluidic thermal control chip-based multichannel immunosensor for noninvasively detecting acute myocardial infarction. Anal Chem 93:15033–15041

    CAS  PubMed  Google Scholar 

  6. Suprun E, Bulko T, Lisitsa A, Gnedenko O, Ivanov A, Shumyantseva V, Archakov A (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosens Bioelectron 25:1694–1698

    CAS  PubMed  Google Scholar 

  7. Yoo SS, Kim SY, Kim KS, Hong S, Oh MJ, Nam MG, Kim WJ, Park J, Chung CH, Choe WS, Yoo PJ (2020) Controlling inter-sheet-distance in reduced graphene oxide electrodes for highly sensitive electrochemical impedimetric sensing of myoglobin. Sens Actuators B Chem 305:127477

    CAS  Google Scholar 

  8. Piloto AML, Ribeiro DSM, Rodrigues SSM, Santos JLM, Sampaio P, Sales G (2021) Imprinted fluorescent cellulose membranes for the on-site detection of myoglobin in biological media. ACS Appl Bio Mater 4:4224–4235

    CAS  PubMed  Google Scholar 

  9. Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C (2020) Separation-free electrogenerated chemiluminescence immunoassay incorporating target assistant proximity hybridization and dynamically competitive hybridization of a DNA signal probe. Anal Chem 92:884–891

    CAS  PubMed  Google Scholar 

  10. El Said WA, Fouad DM, El Safty SA (2016) Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sens Actuators B Chem 228:401–409

    Google Scholar 

  11. Adeel M, Rahman MM, Lee JJ (2019) Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosens Bioelectron 126:143–150

    CAS  PubMed  Google Scholar 

  12. Kumar V, Brent JR, Shorie M, Kaur H, Chadha G, Thomas AG, Lewis EA, Rooney AP, Nguyen L, Zhong XL, Burke MG, Haigh SJ, Walton A, McNaughter PD, Tedstone AA, Savjani N, Muryn CA, O’Brien P, Ganguli AK, Lewis DJ, Sabherwal P (2016) Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl Mater Interfaces 8:22860–22868

    CAS  PubMed  Google Scholar 

  13. Biswas S, Lan Q, Li C, Xia X (2022) Morphologically flex Sm-MOF based electrochemical immunosensor for ultrasensitive detection of a colon cancer biomarker. Anal Chem 94:3013–3019

    CAS  PubMed  Google Scholar 

  14. Ma E, Wang P, Yang Q, Yu H, Pei F, Li Y, Liu Q, Dong Y (2019) Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 142:111580

    CAS  PubMed  Google Scholar 

  15. Joseph XB, Kogularasu S, Wang SF, Sheu JK (2021) Hydrothermal-dependent synthesis of exfoliated nickel cobaltite layers for simultaneous determination of IARC group 2B, 3B carcinogens. ACS Appl Nano Mater 4:12788–12797

    CAS  Google Scholar 

  16. Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK (2022) Fabrication of praseodymium vanadate nanoparticles on disposable strip for rapid and real-time amperometric sensing of arsenic drug roxarsone. Inorg Chem 61:16370–16379

    CAS  PubMed  Google Scholar 

  17. Tang C, Zhang J, Chen D, He J, Wang A, Feng J (2022) Ultrasensitive label-free electrochemical immunosensor of NT-proBNP biomarker based on branched AuPd nanocrystals/N-doped honeycombed porous carbon. Bioelectrochemistry 148:108225

    CAS  PubMed  Google Scholar 

  18. Cui F, Zhou Z, Feng H, Zhou HS (2020) Disposable polyurethane nanospiked gold electrode-based label-free electrochemical immunosensor for clostridium difficile. ACS Appl Nano Mater 3:357–363

    CAS  Google Scholar 

  19. Qiu J, Jiang P, Wang C, Chu Y, Zhang Y, Wang Y, Zhang M, Han L (2022) Lys-AuNPs@MoS2 nanocomposite self-assembled microfluidic immunoassay biochip for ultrasensitive detection of multiplex biomarkers for cardiovascular diseases. Anal Chem 94:4720–4728

    CAS  PubMed  Google Scholar 

  20. Sheikhzadeh E, Beni V, Zourob M (2021) Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 230:122026

    CAS  PubMed  Google Scholar 

  21. Jiang T, Song Y, Wei T, Li H, Du D, Zhu M, Lin Y (2016) Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 77:687–694

    CAS  PubMed  Google Scholar 

  22. Karthikeyan B, Murugavelu M (2012) Nano bimetallic Ag/Pt system as efficient opto and electrochemical sensing platform towards adenine. Sens Actuators B Chem 163:216–223

    CAS  Google Scholar 

  23. Yang H, Hou J, Wang Z, Zhang T, Xu C (2018) An ultrasensitive biosensor for superoxide anion based on hollow porous PtAg nanospheres. Biosens Bioelectron 117:429–435

    CAS  PubMed  Google Scholar 

  24. Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y (2020) Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosens Bioelectron 149:111842

    CAS  PubMed  Google Scholar 

  25. Chen C, Zhou X, Wang Z, Han J, Chen S (2022) Core–shell Au@PtAg modified TiO2–Ti3C2 heterostructure and target-triggered DNAzyme cascade amplification for photoelectrochemical detection of ochratoxin A. Anal Chim Acta 1216:339943

    CAS  PubMed  Google Scholar 

  26. Zhou X, Zhang W, Wang Z, Han J, Xie G, Chen S (2020) Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82−/AuPtAg ECL ternary system and DNA walker amplification. Biosens Bioelectron 148:111795

    CAS  PubMed  Google Scholar 

  27. Shi Y, Wang A, Yuan P, Zhang L, Luo X, Feng J (2018) Highly sensitive label-free amperometric immunoassay of prostate specific antigen using hollow dendritic AuPtAg alloyed nanocrystals. Biosens Bioelectron 111:47–51

    CAS  PubMed  Google Scholar 

  28. Banan Sadeghian R, Han J, Ostrovidov S, Salehi S, Bahraminejad B, Ahadian S, Chen M, Khademhosseini A (2017) Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosens Bioelectron 88:41–47

    CAS  PubMed  Google Scholar 

  29. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens Bioelectron 75:15–22

    CAS  PubMed  Google Scholar 

  30. Guo X, Ye W, Zhu R, Wang W, Xie F, Sun H, Zhao Q, Ding Y, Yang J (2014) Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance. Nanoscale 6:11732–11737

    CAS  PubMed  Google Scholar 

  31. Xue M, Tan Y (2014) Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity. Nanoscale 6:12500–12514

    CAS  PubMed  Google Scholar 

  32. Nikoobakht B, El Sayed M (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    CAS  Google Scholar 

  33. Chen M, Huang Z, Ye X, Zhang L, Feng J, Wang A (2023) Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous FeNC nanosheets for boosting oxygen reduction reaction. J Colloid Interface Sci 637:216–224

    CAS  PubMed  Google Scholar 

  34. Liu L, Wu D, Zhang L, Feng J, Wang A (2023) FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. J Colloid Interface Sci 639:424–433

    CAS  PubMed  Google Scholar 

  35. Sreeprasad TS, Samal AK, Pradeep T (2007) Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir 23:9463–9471

    CAS  PubMed  Google Scholar 

  36. Feng Y, He J, Jiang L, Chen D, Wang A, Feng J (2022) Novel sandwich-typed electrochemical immunosensing of C-reactive protein using multiply twinned AuPtRh nanobead chains and nitrogen-rich porous carbon nanospheres decorated with Au nanoparticles. Sens Actuators B Chem 358:131518

    CAS  Google Scholar 

  37. Cheng D, Zhou Z, Shang S, Wang H, Guan H, Yang H, Liu Y (2022) Electrochemical immunosensor for highly sensitive detection of cTnI via in-situ initiated ROP signal amplification strategy. Anal Chim Acta 1219:340032

    CAS  PubMed  Google Scholar 

  38. Ge X, Feng Y, Cen S, Wang A, Mei L, Luo X, Feng J (2021) A label-free electrochemical immnunosensor based on signal magnification of oxygen reduction reaction catalyzed by uniform PtCo nanodendrites for highly sensitive detection of carbohydrate antigen 15–3. Anal Chim Acta 1176:338750

    CAS  PubMed  Google Scholar 

  39. Yola ML, Atar N (2020) Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core–shell Ti-MOF@COFs composites. Nanoscale 12:19824–19832

    CAS  PubMed  Google Scholar 

  40. Wang B, Mei L, Ma Y, Xu Y, Ren S, Cao J, Liu Y, Zhao W (2018) Photoelectrochemical-chemical-chemical redox cycling for advanced signal amplification: proof-of-concept toward ultrasensitive photoelectrochemical bioanalysis. Anal Chem 90:12347–12351

    CAS  PubMed  Google Scholar 

  41. Singh S, Tuteja SK, Sillu D, Deep A, Suri CR (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183:1729–1738

    CAS  Google Scholar 

  42. Zhang J, Tang C, Chen D, Jiang L, Wang A, Feng J (2022) Ultrasensitive label-free sandwich immunoassay of cardiac biomarker myoglobin using meso-SiO2@ploydapamine@PtPd nanocrystals and PtNi nanodendrites for effective signal amplification. Appl Surf Sci:155216

  43. Tuteja SK, Chen R, Kukkar M, Song CK, Mutreja R, Singh S, Paul AK, Lee H, Kim K-H, Deep A, Suri CR (2016) A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens Bioelectron 86:548–556

    CAS  PubMed  Google Scholar 

  44. Wang Y, Hong Y, Wang M, Zhu Y (2022) Multifunctional nanolabelsbased on polydopamine nanospheres for sensitive alpha fetoprotein electrochemical detection. ACS Appl Nano Mater 5:1588–1599

    CAS  Google Scholar 

  45. Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X (2021) One-step electrochemical growth of 2D/3D Zn(II)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay. ACS Appl Mater Interfaces 13:46225–46232

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Public Welfare Technology Application Research Project (LGG19B050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu-Ju Feng or Tuck Yun Cheang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

• AuPtAg PHNR was prepared for the first time by using Au NR as sacrificed template.

• The anisotropic oriented growth and etching process were involved.

• The AuPtAg PHNR provided a large specific surface area, attractive electronic effects and high catalytic activity.

• The immunosensor showed excellent performances for ultrasensitive detection of Myo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 389 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Wang, AJ., Feng, JJ. et al. Mulberry-like porous-hollow AuPtAg nanorods for electrochemical immunosensing of biomarker myoglobin. Microchim Acta 190, 233 (2023). https://doi.org/10.1007/s00604-023-05802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05802-2

Keywords

Navigation