Skip to main content
Log in

Cyanostilbene-based fluorescent paper array for monitoring fish and meat freshness via amino content detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The detection of biogenic amines released from degraded meats is an effective method for evaluating meat freshness. However, existing traditional methods like titration are deemed tedious, while the use of sophisticated analytical instruments is not amenable to field testing. Herein, a cyanostilbene-based fluorescent array was rapidly fabricated using macroarray synthesis on a cellulose paper surface to detect amines liberated from spoiled beef, fish, and chicken. The fluorescence changes of immobilized molecules from the interaction with gaseous amines were used to monitor changes in freshness levels. Thanks to the high-throughput nature of macroarray synthesis, a set of highly responsive molecules such as pyridinium and dicyanovinyl moieties were quickly revealed. Importantly, this method offers flexibility in sensing applications including (1) sensing by individual sensor molecules, where the fluorescence response correlated well with established titration methods, and (2) collective sensing whereby chemometric analysis was used to provide a cutoff of freshness with 73–100% accuracy depending on meat types. Overall, this study paves the way for a robust and cost-effective tool for monitoring meat freshness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Freitas J, Vaz-Pires P, Câmara JS (2021) Quality index method for fish quality control: understanding the applications, the appointed limits and the upcoming trends. Trends Food Sci Technol 111:333–345

    Article  CAS  Google Scholar 

  2. Andre RS, Mercante LA, Facure MHM, Sanfelice RC, Fugikawa-Santos L, Swager TM, Correa DS (2022) Recent progress in amine gas sensors for food quality monitoring: novel architectures for sensing materials and systems. ACS Sens 7:2104–2131

    Article  CAS  PubMed  Google Scholar 

  3. Wojnowski W, Namieśnik J, Płotka-Wasylka J (2019) Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: estimation of meat’s freshness. Microchem J 145:130–138

    Article  CAS  Google Scholar 

  4. Sentellas S, Núñez Ó, Saurina J (2016) Recent advances in the determination of biogenic amines in food samples by (U)HPLC. J Agric Food Chem 64:7667–7678

    Article  CAS  PubMed  Google Scholar 

  5. Gil L, Barat JM, Escriche I, Garcia-Breijo E, Martínez-Máñez R, Soto J (2008) An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Microchim Acta 163:121–129

    Article  CAS  Google Scholar 

  6. Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J (2019) Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat Commun 10:795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mustafa F, Andreescu S (2020) Paper-based enzyme biosensor for one-step detection of hypoxanthine in fresh and degraded fish. ACS Sens 5:4092–4100

    Article  CAS  PubMed  Google Scholar 

  8. Sheng W, Sun C, Fang G, Wu X, Hu G, Zhang Y, Wang S (2016) Development of an enzyme-linked immunosorbent assay for the detection of tyramine as an index of freshness in meat and seafood. J Agric Food Chem 64:8944–8949

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Zhou J, Eremin S, Dias ACP, Zhang X (2020) Development of ELISA and chemiluminescence enzyme immunoassay for quantification of histamine in drug products and food samples. Anal Bioanal Chem 412:4739–4747

    Article  CAS  PubMed  Google Scholar 

  10. Sharifnezhad AH, Dashtian K, Zare-Dorabei R, Mahdavi M (2022) Visible light-responsive vanadium-based metal–organic framework supported pepsin with high oxidase mimic activity for food spoilage monitoring. Microchim Acta 189:448

    Article  CAS  Google Scholar 

  11. Li Z, Askim JR, Suslick KS (2019) The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev 119:231–292

    Article  CAS  PubMed  Google Scholar 

  12. Sheini A (2020) Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Microchim Acta 187:167

    Article  CAS  Google Scholar 

  13. Bordbar MM, Nguyen TA, Arduini F, Bagheri H (2020) A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Microchim Acta 187:621

    Article  CAS  Google Scholar 

  14. Surti PV, Kim MW, Phan LMT, Kailasa SK, Mungray AK, Park JP, Park TJ (2022) Progress on dot-blot assay as a promising analytical tool: detection from molecules to cells. TrAC, Trends Anal Chem 157:116736

    Article  CAS  Google Scholar 

  15. Liu H, Zhang Y, Huang L, Wang M (2022) A colorimetric gas-sensitive array sensor using filter paper for the analysis of fish freshness. Food Chem 377:132029

    Article  CAS  PubMed  Google Scholar 

  16. Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS (2021) Microfluidic paper-based analytical devices: from design to applications. Chem Rev 121:11835–11885

    Article  CAS  PubMed  Google Scholar 

  17. Blackwell HE (2006) Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis. Curr Opin Chem Biol 10:203–212

    Article  CAS  PubMed  Google Scholar 

  18. Bowman MD, Jacobson MM, Blackwell HE (2006) Discovery of fluorescent cyanopyridine and deazalumazine dyes using small molecule macroarrays. Org Lett 8:1645–1648

    Article  CAS  PubMed  Google Scholar 

  19. Praneenararat T, Geske GD, Blackwell HE (2009) Efficient synthesis and evaluation of quorum-sensing modulators using small molecule macroarrays. Org Lett 11:4600–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Promchat A, Wongravee K, Sukwattanasinitt M, Praneenararat T (2019) Rapid discovery and structure-property relationships of metal-ion fluorescent sensors via macroarray synthesis. Sci Rep 9:10390

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zaragozá P, Fuentes A, Ruiz-Rico M, Vivancos J-L, Fernández-Segovia I, Ros-Lis JV, Barat JM, Martínez-Máñez R (2015) Development of a colorimetric sensor array for squid spoilage assessment. Food Chem 175:315–321

    Article  PubMed  Google Scholar 

  22. Li Z, Suslick KS (2016) Portable optoelectronic nose for monitoring meat freshness. ACS Sensors 1:1330–1335

    Article  CAS  Google Scholar 

  23. Guo L, Wang T, Wu Z, Wang J, Wang M, Cui Z, Ji S, Cai J, Xu C, Chen X (2020) Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Adv Mater 32:2004805

    Article  CAS  Google Scholar 

  24. Xu W, He Y, Li J, Deng Y, Xu E, Feng J, Ding T, Liu D, Wang W (2022) Non-destructive determination of beef freshness based on colorimetric sensor array and multivariate analysis. Sens Actuators B: Chem 369:132282

    Article  CAS  Google Scholar 

  25. Huang G, Chang X, Jiang Y, Lin B, Li BS, Tang BZ (2020) Multi-stimuli responsive cyanostilbene derivatives: pH, amine vapor sensing and mechanoluminescence. Mater Chem Front 4:1720–1728

    Article  CAS  Google Scholar 

  26. Cao X, Li Y, Han Q, Gao A, Wang B, Chang X, Hou J-t (2020) Design of large π-conjugated α-cyanostilbene derivatives as colorimetric sensors for volatile acids and organic amine gases. J Mater Chem C 8:4058–4064

    Article  CAS  Google Scholar 

  27. Dahiwadkar R, Murugan A, Johnson D, Chakraborty R, Thiruvenkatam V, Kanvah S (2023) Functional organogel with α-cyanostilbene scaffold: aggregation enhanced emission and picric acid sensing. J Photochem Photobiol A: Chem 434:114227

    Article  CAS  Google Scholar 

  28. Chen J, Huang X, Tang H, Guo H, Yang F (2022) “Turn-on” fluorescence sensor for vitamin B1 based on cyanostilbene macrocycle. Dyes Pigm 207:110705

    Article  CAS  Google Scholar 

  29. Goulas AE, Kontominas MG (2005) Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes. Food Chem 93:511–520

    Article  CAS  Google Scholar 

  30. Charoensumran P, Rauytanapanit M, Sricharoen N, Smith BL, Wongravee K, Maher S, Praneenararat T (2021) Rapid geographical indication of peppercorn seeds using corona discharge mass spectrometry. Sci Rep 11:16089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith BL, Hughes DM, Badu-Tawiah AK, Eccles R, Goodall I, Maher S (2019) Rapid scotch whisky analysis and authentication using desorption atmospheric pressure chemical ionisation mass spectrometry. Sci Rep 9:7994

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rauytanapanit M, Opitakorn A, Terashima M, Waditee-Sirisattha R, Praneenararat T (2018) Antibacterial cotton fabrics based on hydrophilic amino-containing scaffolds. Colloids Surf B Biointerfaces 164:42–49

    Article  CAS  PubMed  Google Scholar 

  33. Kong L, Zhang Y, Mao H, Pan X, Tian Y, Tian Z, Zeng X, Shi J, Tong B, Dong Y (2017) Dimalononitrile-containing probe based on aggregation-enhanced emission features for the multi-mode fluorescence detection of volatile amines. Faraday Discuss 196:101–111

    Article  CAS  PubMed  Google Scholar 

  34. Qiu J, Chen Y, Jiang S, Guo H, Yang F (2018) A fluorescent sensor based on aggregation-induced emission: highly sensitive detection of hydrazine and its application in living cell imaging. Analyst 143:4298–4305

    Article  CAS  PubMed  Google Scholar 

  35. Saravanakumar M, Umamahesh B, Selvakumar R, Dhanapal J, Ashok kumar SK, Sathiyanarayanan KI (2020) A colorimetric and ratiometric fluorescent sensor for biogenic primary amines based on dicyanovinyl substituted phenanthridine conjugated probe. Dyes Pigm 178:108346

    Article  CAS  Google Scholar 

  36. Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z (2018) Recent development of boronic acid-based fluorescent sensors. RSC Adv 8:29400–29427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Tang X, Shen Z, Dong J (2019) Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chem 287:126–132

    Article  CAS  PubMed  Google Scholar 

  38. Bekhit AE-DA, Holman BWB, Giteru SG, Hopkins DL (2021) Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review. Trends Food Sci Technol 109:280–302

    Article  CAS  Google Scholar 

  39. Li L, Umbach DM, Terry P, Taylor JA (2004) Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 20:1638–1640

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research project is supported by the Second Century Fund (C2F), Chulalongkorn University, and by the National Science, Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (PMU-B) (grant number B16F640101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Maher or Thanit Praneenararat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1075 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhinakaran, M.K., Smith, B.L., Vilaivan, T. et al. Cyanostilbene-based fluorescent paper array for monitoring fish and meat freshness via amino content detection. Microchim Acta 190, 215 (2023). https://doi.org/10.1007/s00604-023-05787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05787-y

Keywords

Navigation