Skip to main content
Log in

Separation and colorimetric detection of Escherichia coli by phage tail fiber protein combined with nano-magnetic beads

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric detection method for Escherichia coli (E. coli) in water was established based on a T7 phage tail fiber protein-magnetic separation. Firstly, the tail fiber protein (TFP) was expressed and purified to specifically recognize E. coli, which was verified by using fusion protein GFP-tagged TFP (GFP-TFP) and fluorescence microscopy. Then TFP conjugated with magnetic beads were applied to capture and separate E. coli. The TFP was covalently immobilized on the surface of magnetic beads and captured E. coli as verified by scanning electron microscopy (SEM). Finally, polymyxin B was used to lyse E. coli in solution and the released intracellular β-galactosidase (β-gal) could hydrolyze the colorimetric substrate chlorophenol red-β-D-galactopyranoside (CPRG), causing color change from yellow to purple. The high capture efficiencies of E. coli ranged from 88.70% to 95.65% and E. coli could be detected at a concentration of 102 CFU/mL by naked eyes. The specificity of the chromogenic substrate was evaluated using five different pathogen strains as competitors and tests with four kinds of real water samples showed recoveries of 86.00% to 92.25%. The colorimetric changes determined by visual inspection can be developed as an efficient platform for point-of-care detection of E. coli in resource-limited regions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Qi WZ, Zheng LY, Hou Y, Duan H, Wang L, Wang SY, Liu YJ, Li YB, Liao M, Lin JH (2022) A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem 381:131801. https://doi.org/10.1016/j.foodchem.2021.131801

  2. Ripolles-Avila C, Martinez-Garcia M, Capellas M, Yuste J, Fung DYC, Rodriguez-Jerez JJ (2020) From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr Rev Food Sci Food Safety 19(4):1877–1907. https://doi.org/10.1111/1541-4337.12592

    Article  Google Scholar 

  3. Wang DH, Chen JH, Nugen SR (2017) Electrochemical Detection of Escherichia coil from Aqueous Samples Using Engineered Phages. Anal Chem 89(3):1650–1657. https://doi.org/10.1021/acs.analchem.6b03752

    Article  CAS  PubMed  Google Scholar 

  4. Chen JH, Alcaine SD, Jiang ZW, Rotello VM, Nugen SR (2015) Detection of Escherichia coli in Drinking Water Using T7 Bacteriophage-Conjugated Magnetic Probe. Anal Chem 87(17):8977–8984. https://doi.org/10.1021/acs.analchem.5b02175

    Article  CAS  PubMed  Google Scholar 

  5. Mei JY, Wang DD, Zhang YH, Wu D, Cui JH, Gan MZ, Liu PF (2023) Portable paper-based nucleic acid enrichment for field testing. Adv Sci 10(11):e2205217. https://doi.org/10.1002/advs.202205217

  6. Kulkarni MB, Ayachit NH, Aminabhavi TM (2023) Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. Biosens-Basel 13(2). https://doi.org/10.3390/bios13020246

  7. Jia ZY, Muller M, Le Gall T, Riool M, Muller M, Zaat SAJ, Montier T, Schonherr H (2021) Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact Mater 6(12):4286–4300. https://doi.org/10.1016/j.bioactmat.2021.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang LS, Huang R, Liu WP, Liu HX, Zhou XM, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7. https://doi.org/10.1016/j.bios.2016.05.100

    Article  CAS  PubMed  Google Scholar 

  9. Mannoor MS, Zhang SY, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci USA 107(45):19207–19212. https://doi.org/10.1073/pnas.1008768107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A (2022) Antimicrobial peptides: promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 55:107901. https://doi.org/10.1016/j.biotechadv.2021.107901

  11. El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129(44):13392-+. https://doi.org/10.1021/ja076086e

    Article  CAS  PubMed  Google Scholar 

  12. Wang ZL, Cai R, Gao ZP, Yuan YH, Yue TL (2020) Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr Rev Food Sci Food Safety 19(6):3802–3824. https://doi.org/10.1111/1541-4337.12656

    Article  CAS  Google Scholar 

  13. Srisa-Art M, Boehle KE, Geiss BJ, Henry CS (2018) Highly Sensitive Detection of Salmonella typhimurium Using a Colorimetric Paper-Based Analytical Device Coupled with Immunomagnetic Separation. Anal Chem 90(1):1035–1043. https://doi.org/10.1021/acs.analchem.7b04628

    Article  CAS  PubMed  Google Scholar 

  14. Liu MY, Yue FL, Kong QQ, Liu ZL, Guo YM, Sun X (2022) Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. J Agric Food Chem 70(18):5477–5498. https://doi.org/10.1021/acs.jafc.2c01547

    Article  CAS  PubMed  Google Scholar 

  15. Zhang WS, Cui CJ, Chen HS, Liu HB, Bin S, Wang DL, Wang YT (2022) Advances in electrochemical aptamer biosensors for the detection of food-borne pathogenic bacteria. ChemistrySelect 7(29):e202202190. https://doi.org/10.1002/slct.202202190

  16. Zhang XR, Chen LL, Hu SW (2021) Advances in Bacteria Biosensing Based on Molecular Recognition. Chem J Chinese Univ-Chinese 42(11):3468–3476. https://doi.org/10.7503/cjcu20210425

    Article  CAS  Google Scholar 

  17. Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ (2018) Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 16(12):760–773. https://doi.org/10.1038/s41579-018-0070-8

    Article  CAS  PubMed  Google Scholar 

  18. Silva JB, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. Fems Microbiol Lett 363(4):fnw002. https://doi.org/10.1093/femsle/fnw002

  19. Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM (2022) Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 18:1–18. https://doi.org/10.1080/07388551.2022.2071671

  20. He Y, Shi YL, Liu ML, Wang YR, Wang L, Lu SG, Fu ZF (2018) Nonlytic Recombinant Phage Tail Fiber Protein for Specific Recognition of Pseudomonas aeruginosa. Anal Chem 90(24):14462–14468. https://doi.org/10.1021/acs.analchem.8b04160

    Article  CAS  PubMed  Google Scholar 

  21. Bai YL, Shahed-Al-Mahmud M, Selvaprakash K, Lin NT, Chen YC (2019) Tail Fiber Protein-Immobilized Magnetic Nanoparticle-Based Affinity Approaches for Detection of Acinetobacter baumannii. Anal Chem 91(15):10335–10342. https://doi.org/10.1021/acs.analchem.9b02964

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Yang HL, Luo S, Wang L, Lu SG, Fu ZF (2022) Engineering phage tail fiber protein as a wide-spectrum probe for Acinetobacter baumannii strains with a recognition rate of 100%. Anal Chem 94(27):9610–9617. https://doi.org/10.1021/acs.analchem.2c00682

  23. Cerritelli ME, Conway JF, Cheng NQ, Trus BL, Steven AC (2003) Molecular mechanisms in bacteriophage T7 procapsid assembly, maturation, and DNA containment. Adv Protein Chem 64:301–323. https://doi.org/10.1016/s0065-3233(03)01008-8

  24. Garcia-Doval C, van Raaij MJ (2012) Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proc Natl Acad Sci USA 109(24):9390–9395. https://doi.org/10.1073/pnas.1119719109

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dunne M, Rupf B, Tala M, Qabrati X, Ernst P, Shen Y, Sumrall E, Heeb L, Pluckthun A, Loessner MJ, Kilcher S (2019) Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Reports 29(5):1336-+. https://doi.org/10.1016/j.celrep.2019.09.062

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Deng ZF, Li YM, Ma Y, Wang JF (2022) Design and characterization of a novel lytic protein against Clostridium difficile. Appl Microbiol Biotechnol 106(12):4511–4521. https://doi.org/10.1007/s00253-022-12010-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M (2021) Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 19:3416–3426. https://doi.org/10.1016/j.csbj.2021.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santos SB, Cunha AP, Macedo M, Nogueira CL, Brandao A, Costa SP, Melo LDR, Azeredo J, Carvalho CM (2020) Bacteriophage-receptor binding proteins for multiplex detection ofStaphylococcusandEnterococcusin blood. Biotechnol Bioeng 117(11):3286–3298. https://doi.org/10.1002/bit.27489

    Article  CAS  PubMed  Google Scholar 

  29. Xiao FB, Li WQ, Xu HY (2022) Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application. Compr Rev Food Sci Food Safety. https://doi.org/10.1111/1541-4337.13023

    Article  Google Scholar 

  30. Filik K, Szermer-Olearnik B, Oleksy S, Brykala J, Brzozowska E (2022) Bacteriophage tail proteins as a tool for bacterial pathogen recognition-a literature review. Antibiot-Basel 11(5):555. https://doi.org/10.3390/antibiotics11050555

  31. Mao Y, Huang XL, Xiong SC, Xu HY, Aguilar ZP, Xiong YH (2016) Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 59:601–608. https://doi.org/10.1016/j.foodcont.2015.06.048

    Article  CAS  Google Scholar 

  32. Bayramoglu G, Ozalp VC, Oztekin M, Arica MY (2019) Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 200:263–271. https://doi.org/10.1016/j.talanta.2019.03.048

    Article  CAS  PubMed  Google Scholar 

  33. Dursun AD, Borsa BA, Bayramoglu G, Arica MY, Ozalp VC (2022) Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta 239:123074. https://doi.org/10.1016/j.talanta.2021.123074

  34. Zhou Y, Ramasamy RP (2019) Isolation and separation of Listeria monocytogenes using bacteriophage P100-modified magnetic particles. Colloids Surf B-Biointerfaces 175:421–427. https://doi.org/10.1016/j.colsurfb.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZY, Wang DH, Kinchla A, Sela D, Nugen S (2016) Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection. Anal Bioanal Chem 408(15):4169–4178. https://doi.org/10.1007/s00216-016-9511-2

    Article  CAS  PubMed  Google Scholar 

  36. Bartesaghi A, Matthies D, Banerjee S, Merk A, Subramaniam S (2014) Structure of beta-galactosidase at 3.2-angstrom resolution obtained by cryo-electron microscopy. Proceed Natl Acad Sci US A 111(32):11709–11714. https://doi.org/10.1073/pnas.1402809111

    Article  CAS  Google Scholar 

  37. Sun QL, Cao MC, Zhang X, Wang M, Ma Y, Wang JF (2021) A simple and low-cost paper-based colorimetric method for detecting and distinguishing the GII.4 and GII.17 genotypes of norovirus. Talanta 225:121978. https://doi.org/10.1016/j.talanta.2020.121978

  38. Denyes JM, Dunne M, Steiner S, Mittelviefhaus M, Weiss A, Schmidt H, Klumpp J, Loessner MJ (2017) Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of salmonella cells. Appl Environ Microbiol 83(12):e00277-17. https://doi.org/10.1128/aem.00277-17

  39. Xu JZ, Li XB, Kang GB, Bai L, Wang P, Huang H (2020) Isolation and characterization of AbTJ, an Acinetobacter baumannii phage, and functional identification of its receptor-binding modules. Viruses-Basel 12(2):205. https://doi.org/10.3390/v12020205

  40. Wang LK, Lin H, Zhang J, Wang JX (2022) Phage long tail fiber protein-immobilized magnetic nanoparticles for rapid and ultrasensitive detection of Salmonella. Talanta 248:123627. https://doi.org/10.1016/j.talanta.2022.123627

  41. Ding YF, Huang CX, Zhang YM, Wang J, Wang XH (2023) Magnetic microbead enzyme-linked immunoassay based on phage encoded protein RBP 41-mediated for rapid and sensitive detection of Salmonella in food matrices. Food Res Int 163:112212. https://doi.org/10.1016/j.foodres.2022.112212

Download references

Acknowledgements

This work was supported by Science and Technology Program of Guangzhou (202205110007).

Author information

Authors and Affiliations

Authors

Contributions

Bin Hong, Yi Ma and Jufang Wang, designed the experiments. Bin Hong, wrote the manuscript and performed the experiments. Yanmei Li, provided writing assistance for the manuscript. Wenhai Wang, analyzed data and drafted the manuscript. All authors have approved and read the final manuscript.

Corresponding authors

Correspondence to Yi Ma or Jufang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1.A colorimetric detection method for E. coli in water was established based on a T7 phage tail fiber protein-magnetic separation.

2.Polymyxin B showed good lytic ability and was used to lyse E. coli to release β-gal.

3.There are high separation rate and low limit of detection for E. coli in our study.

4.The colorimetric change can be determined by naked eyes allowing for point-of-care testing of E. coli in resource-limited regions.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 868 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B., Li, Y., Wang, W. et al. Separation and colorimetric detection of Escherichia coli by phage tail fiber protein combined with nano-magnetic beads. Microchim Acta 190, 202 (2023). https://doi.org/10.1007/s00604-023-05784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05784-1

Keywords

Navigation