Skip to main content
Log in

Electrochemical peptide nucleic acid functionalized α-Fe2O3/Fe3O4 nanosheets for detection of CYP2C19*2 gene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The CYP2C19*2 gene carriers and non-carriers are closely related to the dosage of clopidogrel. To correctly guide the use of clopidogrel and promote individualized therapy, an ultra-sensitive electrochemical biosensor was developed for the detection of CYP2C19*2 gene. The heterogeneous α-Fe2O3/Fe3O4 nanosheets were prepared via the hydrothermal-calcination process, and the preparation parameters were optimized. The average diameter and thickness of the nanosheets were approximately 150 nm and 53 nm, respectively; and the saturation magnetization was 80.2 emu/g. The α-Fe2O3/Fe3O4@Au nanosheets were prepared by sodium borohydride reduction method, and self-assembled to the electrode surface with magnetic field. Ultra-sensitive detection of CYP2C19*2 gene was realized through the recognition ability of strong single base mismatching of peptide nucleic acid and signal amplification effect of magnetic α-Fe2O3/Fe3O4@Au nanosheets. Under optimal detection conditions, the current had a good linear correlation with the negative logarithm of CYP2C19*2 gene concentration in the range 1 pM—1 nM, and the detection limit was 0.64 pM (S/N = 3). Meanwhile, the electrochemical signals of target DNA and incomplete complementary DNA were detected. The constructed biosensor exhibited good selectivity, reproducibility, and stability, providing a promising strategy for the detection of other gene mutations by electrochemical biosensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J, Cai YC, Sun JY, Feng H, Zhu XY, Chen Q, Gao F, Ni QB, Mao LL, Yang MF, Sun BL (2023) Administration of intramuscular AAV-BDNF and intranasal AAV-TrkB promotes neurological recovery via enhancing corticospinal synaptic connections in stroke rats. Exp Neurol 359:114236. https://doi.org/10.1016/j.expneurol.2022.114236

    Article  CAS  PubMed  Google Scholar 

  2. Hu QR, Luo LJ, Yang P, Mu KM, Yang HY, Mao SJ (2023) Neuroprotection of boropinol-B in cerebral ischemia-reperfusion injury by inhibiting inflammation and apoptosis. Brain Res 1798:148132. https://doi.org/10.1016/j.brainres.2022.148132

    Article  CAS  PubMed  Google Scholar 

  3. Liu RJ, Shao J (2022) Research progress on risk factors related to intracranial artery, carotid artery, and coronary artery stenosis. Front Cardiovasc Med 9:970476. https://doi.org/10.3389/fcvm.2022.970476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shao Y, Wu CJ, Mao YJ, Li DM, Wang YZ, Zhu K (2022) Effect of Risk-Focused Diversified Safety Management Mode in Patients with Major Artery Stent Implantation. Emerg Med Int 2022:1–9. https://doi.org/10.1155/2022/1284254

    Article  Google Scholar 

  5. Yan YY, Li N, Guo F, Wu AH, Jin W, Yang R, Bai Y, Zhang X (2022) Fabrication of Intracranial Vascular Nitinol Alloy Stents with Improved Mechanical Property and Endothelialization Function. Acta Metall Sin 35:2069–2081. https://doi.org/10.1007/s40195-022-01435-1

    Article  CAS  Google Scholar 

  6. Si JH, Ma N, Gao F, Mo DP, Luo G, Miao ZR (2022) Effect of a Drug-Eluting Stent vs Bare Metal Stent for the Treatment of Symptomatic Intracranial and Vertebral Artery Stenosis. Front Neurol 13:854226. https://doi.org/10.3389/fneur.2022.854226

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jia H, Huang B, Kang L, Lai H, Li J, Wang CS, Sun YX (2022) Preoperative and intraoperative risk factors of postoperative stroke in total aortic arch replacement and stent elephant trunk implantation. EClinicalMedicine 47:101416. https://doi.org/10.1016/j.eclinm.2022.101416

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Zhang BR, Yang XT, Guo ST, Waterhouse GIN, Song GR, Guan SY, Liu AH, Cheng L, Zhou SY (2023) Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact Mater 20:126–136. https://doi.org/10.1016/j.bioactmat.2022.05.012

    Article  CAS  PubMed  Google Scholar 

  9. Song Q, Bi L, Jiao JK, Shang JF, Li QN, Shabuerjiang L, Bai MR, Liu X (2023) Zhachong Shisanwei Pill resists ischemic stroke by lysosome pathway based on proteomics and bioinformatics. J Ethnopharmacol 301:115766. https://doi.org/10.1016/j.jep.2022.115766

    Article  CAS  PubMed  Google Scholar 

  10. Liao YJ, Hsiao TH, Lin CH, Hsu CS, Chang YL, Chen YW, Hsu CY, Chen YM, Wu MF (2022) Clopidogrel Use and CYP2C19 Genotypes in Patients Undergoing Vascular Intervention Procedure: A Hospital-Based Study. Pharmacogen Pers Med 15:81–89. https://doi.org/10.2147/PGPM.S335860

    Article  CAS  Google Scholar 

  11. Ali ZO, Bader L, Mohammed S, Arafa S, Arabi A, Cavallari L, Langaee T, Mraiche F, Rizk N, Awaisu A, Shahin MH, Elewa H (2022) Effect of CYP2C19 genetic variants on bleeding and major adverse cardiovascular events in a cohort of Arab patients undergoing percutaneous coronary intervention and stent implantation. Pharmacogenet Genom 32:183–191. https://doi.org/10.1097/FPC.0000000000000469

    Article  CAS  Google Scholar 

  12. Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS, Stein CM, Kisor DF, Limdi NA, Lee YM, Scott SA, Hulot J, Roden DM, Gaedigk A, Caudle KE, Klein TE, Johnson JA, Shuldiner AR (2022) Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin Pharmacol Ther 112:959–967. https://doi.org/10.1002/cpt.2526

    Article  CAS  PubMed  Google Scholar 

  13. Zong JX, Tang YD, Wang T, Ullah I, Xu K, Wang J, Chen PS, Chen ZG, Zhu TT, Chen J, Li JM, Wang F, Yang L, Fan YS, Shi L, Gong XX, Eikelboom JW, Zhao Y, Li CJ (2022) Impact of Insulin Receptor Substrate-1 rs956115 and CYP2C19 rs4244285 Genotypes on Clinical Outcome of Patients Undergoing Percutaneous Coronary Intervention. J Am Heart Assoc 11:e025058. https://doi.org/10.1161/JAHA.121.025058

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahmed S, Gul S, Siraj S, Hussain A, Sheikh FS, Shah SU, Janjua K, Khan H, Hamdard MH (2022) Antiplatelet response to clopidogrel is associated with a haplotype in CYP2C19 gene in Pakistani patients. Sci Rep 12:6171. https://doi.org/10.1038/s41598-022-09679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang CL, He JL, Zhang YC, Chen J, Zhao YL, Niu YZ, Yu C (2018) Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19*2 allele in human serum. Biosens Bioelectron 102:94–100. https://doi.org/10.1016/j.bios.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  16. Kaladari F, El-Maghrabey M, Kishikawa N, Kuroda N (2023) Development of signal multiplication system for quinone linked immunosorbent assay (Multi-QuLISA) by using poly-l-lysine dendrigraft and 1,2-naphthoquinone-4-sulfonate as enzyme-free tag. Talanta 253:123911. https://doi.org/10.1016/j.talanta.2022.123911

    Article  CAS  PubMed  Google Scholar 

  17. Hong YM, Ji RY, Wang ZY, Gu JJ, Jiao XN, Li QC (2023) Development and application of a multiplex PCR method to differentiate Salmonella enterica serovar Typhimurium from its monophasic variants in pig farms. Food Microbiol 109:104135. https://doi.org/10.1016/j.fm.2022.104135

    Article  CAS  PubMed  Google Scholar 

  18. Tian P, Mandrell R (2006) Detection of norovirus capsid proteins in faecal and food samples by a real time immuno-PCR method. J Appl Microbiol 100:564–574. https://doi.org/10.1111/j.1365-2672.2005.02816.x

    Article  CAS  PubMed  Google Scholar 

  19. Abdallah AB, Ghaith EA, Mortada WI, Fathi Salem Molouk A (2023) Electrochemical sensing of sodium dehydroacetate in preserved strawberries based onin situ pyrrole electropolymerization at modified carbon paste electrodes. Food Chem 401:134058. https://doi.org/10.1016/j.foodchem.2022.134058

    Article  CAS  PubMed  Google Scholar 

  20. Arabi M, Ostovan A, Li JH, Wang XY, Zhang ZY, Choo J, Chen LX (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  21. Ostovan A, Arabi M, Wang YQ, Li JH, Li BW, Wang XY, Chen LX (2022) Greenificated Molecularly Imprinted Materials for Advanced Applications. Adv Mater 34:2203154. https://doi.org/10.1002/adma.202203154

    Article  CAS  Google Scholar 

  22. Robles-Remacho A, Luque-Gonzalez MA, López-Delgado FJ, Guardia-Monteagudo JJ, Fara MA, Pernagallo S, Sanchez-Martin RM, Diaz-Mochon JJ (2023) Direct detection of alpha satellite DNA with single-base resolution by using abasic Peptide Nucleic Acids and Fluorescent in situ Hybridization. Biosens Bioelectron 219:114770. https://doi.org/10.1016/j.bios.2022.114770

    Article  CAS  Google Scholar 

  23. Rizalputri LN, Anshori I, Handayani M, Gumilar G, Septiani NLW, Hartati YW, Annas MS, Purwidyantri A, Prabowo BA, Yuliarto B (2023) Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor. Nanotechnology 34:055502. https://doi.org/10.1088/1361-6528/ac9d3f

    Article  Google Scholar 

  24. Oliveira AEF, Pereira AC, Ferreira LF (2023) Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15–3 in human serum samples. Talanta 252:123819. https://doi.org/10.1016/j.talanta.2022.123819

    Article  CAS  PubMed  Google Scholar 

  25. Chinnapaiyan S, Das HT, Chen SM, Govindasamy M, Alshgari RA, Fan CH, Huang CH (2023) CoAl2O4 nanoparticles modified carbon nanofibers as high-efficiency bifunctional electrocatalyst: An efficient electrochemical aqueous asymmetric supercapacitors and non-enzymatic electrochemical sensors. J Alloy Compd 931:167553. https://doi.org/10.1016/j.jallcom.2022.167553

    Article  CAS  Google Scholar 

  26. Jin HL, Dong J, Qi XR, Sun XX, Wei M, He BS, Suo ZG (2023) A label-free impedance-based electrochemical sensor based on self-assembled dendritic DNA nanostructures for Pb2+ detection. Bioelectrochemistry 149:108312. https://doi.org/10.1016/j.bioelechem.2022.108312

    Article  CAS  PubMed  Google Scholar 

  27. Dong XZ, Qi S, Qin MW, Sun YH, Lv Y, Zhang Y, Wang ZP (2023) A novel biomimetic network amplification strategy designed fluorescent aptasensor based on yolk-shell Fe3O4 nanomaterials for aflatoxin B1 detection. Food Chem 398:133761. https://doi.org/10.1016/j.foodchem.2022.133761

    Article  CAS  PubMed  Google Scholar 

  28. Costanzo H, Gooch J, Frascione N (2023) Nanomaterials for optical biosensors in forensic analysis. Talanta 253:123945. https://doi.org/10.1016/j.talanta.2022.123945

    Article  CAS  PubMed  Google Scholar 

  29. Arabi M, Ostovan A, Wang YQ, Mei RC, Fu LW, Li JH, Wang XY, Chen LX (2022) Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 13:5757. https://doi.org/10.1038/s41467-022-33448-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arabi M, Ostovan A, Zhang ZY, Wang YQ, Mei RC, Fu LW, Wang XY, Ma JP, Chen LX (2021) Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  31. Liu RJ, Pan S, Liu M, Huang W, Lv ZX, He A (2021) A label-free electrochemical biosensor with magnetically induced self-assembly for the detection of CYP2C9*3 gene. Appl Surf Sci 537:147868. https://doi.org/10.1016/j.apsusc.2020.147868

    Article  CAS  Google Scholar 

  32. Yang MC, Hardiansyah A, Cheng YW, Liao HL, Wang KS, Randy A, Harito C, Chen JS, Jeng RJ, Liu TY (2022) Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochim Acta A 281:121578. https://doi.org/10.1016/j.saa.2022.121578

    Article  CAS  Google Scholar 

  33. Zhang SH, Fan XL, Xue J (2023) A novel magnetic manganese oxide halloysite composite by one-pot synthesis for the removal of methylene blue from aqueous solution. J Alloy Compd 930:167050. https://doi.org/10.1016/j.jallcom.2022.167050

    Article  CAS  Google Scholar 

  34. Zhu ZQ, Huang QS (2022) In-plane structured Fe3O4/FeS composite loaded on reduced graphene oxide as a stabilized anode material for lithium-ion batteries. Appl Phys A-Mater 128:563. https://doi.org/10.1007/s00339-022-05706-7

    Article  CAS  Google Scholar 

  35. Hoang VT, Tufa LT, Lee J, Doan MQ, Anh NH, Tran VT, Le AT (2023) Tunable SERS activity of Ag@Fe3O4 core-shell nanoparticles: Effect of shell thickness on the sensing performance. J Alloy Compd 933:167649. https://doi.org/10.1016/j.jallcom.2022.167649

    Article  CAS  Google Scholar 

  36. Dong HD, Zhao JP, Peng MX, Zhang YH, Xu PY (2023) Au-modified spindle ZnO for high efficiency H2 sensors. Vacuum 207:111597. https://doi.org/10.1016/j.vacuum.2022.111597

    Article  CAS  Google Scholar 

  37. Shafi A, Bano S, Sharma L, Halder A, Sabir S, Khan MZ (2022) Exploring multifunctional behaviour of g-C3N4 decorated BiVO4/Ag2CO3 hierarchical nanocomposite for simultaneous electrochemical detection of two nitroaromatic compounds and water splitting applications. Talanta 241:123257. https://doi.org/10.1016/j.talanta.2022.123257

    Article  CAS  PubMed  Google Scholar 

  38. Xing S, Xu XJ, Fu P, Xu MJ, Gao TT, Zhang XK, Zhao C (2019) Colorimetric detection of single base-pair mismatches based on the interactions of PNA and PNA/DNA complexes with unmodified gold nanoparticles. Colloid Surface B 181:333–340. https://doi.org/10.1016/j.colsurfb.2019.05.069

    Article  CAS  Google Scholar 

  39. Hu T, Ke XX, Ou YJ, Lin Y (2022) CRISPR/Cas12a-Triggered Chemiluminescence Enhancement Biosensor for Sensitive Detection of Nucleic Acids by Introducing a Tyramide Signal Amplification Strategy. Anal Chem 94:8506–8513. https://doi.org/10.1021/acs.analchem.2c01507

    Article  CAS  PubMed  Google Scholar 

  40. Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H (2017) Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. JAm Chem Soc 139:8698–8704

    Article  CAS  Google Scholar 

  41. Jiang HY, Xia Q, Zheng JT, Bu JL, Li R, Cai ZH, Ling K (2022) Mn2+ modified black phosphorus nanosheets with enhanced DNA adsorption and affinity for robust sensing. Biosens Bioelectron 216:114622. https://doi.org/10.1016/j.bios.2022.114622

    Article  CAS  PubMed  Google Scholar 

  42. Sun PC, Niu K, Du HY, Li RX, Chen JP, Lu XB (2022) Sensitive Electrochemical Biosensor for Rapid Screening of Tumor Biomarker TP53 Gene Mutation Hotspot. Biosensors-Basel 12:658. https://doi.org/10.3390/bios12080658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen Y, Zhong Y, Ye JX, Lei Y, Liu AL (2022) Facile Label-Free Electrochemical DNA Biosensor for Detection of Osteosarcoma-Related Survivin Gene. Biosensors-Basel 12:747. https://doi.org/10.3390/bios12090747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. European Medicines Agency (2011) Guideline on bioanalytical method validation. https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed 12 Nov 2022

Download references

Funding

This work was supported by the Jiangsu Provincial Postgraduate Scientific Practice and Innovation Project (Grant No. SJCX21_1722) and the Science and Technology Innovation Project of CHN Energy (Grant No. GJNY-20–109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aolin He or Ruijiang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Chen, X., Ling, C. et al. Electrochemical peptide nucleic acid functionalized α-Fe2O3/Fe3O4 nanosheets for detection of CYP2C19*2 gene. Microchim Acta 190, 189 (2023). https://doi.org/10.1007/s00604-023-05781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05781-4

Keywords

Navigation