Skip to main content
Log in

A highly sensitive lateral flow immunoassay based on a group-specific monoclonal antibody and amorphous carbon nanoparticles for detection of sulfonamides in milk

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs’ residues in real milk samples, with results being consistent with HPLC–MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adrian J, Font H, Diserens J-M, Sanchez-Baeza F, Marco M (2009) Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J Agric Food Chem 57:385–394. https://doi.org/10.1021/jf8027655

    Article  CAS  PubMed  Google Scholar 

  2. Li CL, Liang X, Wen K, Li Y, Zhang XY, Ma MF, Yu XZ, Yu WB, Shen JZ, Wang ZH (2018) Class-specific monoclonal antibodies and dihydropteroate synthase in bioassays used for the detection of sulfonamides: structural insights into recognition diversity. Anal Methods 91:2392–2400. https://doi.org/10.1021/acs.analchem.8b05174

    Article  CAS  Google Scholar 

  3. Ram BP, Singh P, Martins L, Brock T, Sharkov N, Allison D (1991) High-volume enzyme immunoassay test system for sulfamethazine in swine. J Assoc Of Anal Chem 74:43–46. https://doi.org/10.1093/jaoac/74.1.43

    Article  CAS  Google Scholar 

  4. Althaus RL, Torres A, Montero A, Balasch S, Molina MP (2003) Detection limits of antimicrobials in ewe milk by Delvotest photometric measurements. J Dairy Sci 86:457–463. https://doi.org/10.3168/jds.s0022-0302(03)73624-8

    Article  CAS  PubMed  Google Scholar 

  5. Shao BB, Dong D, Wu YN, Hu JY, Meng J, Tu XM, Xu SK (2005) Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 546:174–181. https://doi.org/10.1016/j.aca.2005.05.007

    Article  CAS  Google Scholar 

  6. Marshall B, Levy S (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718. https://doi.org/10.1128/CMR.00002-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. European, Commission. Commission Regulation (EU) (2009) No. 470/2009. Official Journal of the European Community. L15/63

  8. Ministry of Agriculture and Rural Affairs, National Health Commission and State Administration for Market Regulation of the People’s Republic of China, National standard of China (2020) GB 31650–2019. National food safety standard-Maximum residue limits for veterinary drugs in foods, pp 33–34

  9. Zhang XY, Ding MY, Zhang CS, Mao YX, Wang YY, Li PP, Jiang HY, Wang ZH, Yu XZ (2021) Development of a new monoclonal antibody against brevetoxins in oyster samples based on the indirect competitive enzyme-linked immunosorbent assay. Foods 10:2398. https://doi.org/10.3390/foods10102398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang XY, Zhao FF, Sun YW, Mi TJ, Wang LY, Li Q, Li JY, Ma WT, Liu WJ, Zuo JN, Chu XY, Chen B, Han WX, Mao Y (2020) Development of a highly sensitive lateral flow immunoassay based on receptor-antibody-amorphous carbon nanoparticles to detect 22 β-lactams in milk. Sens Actuators B Chem 321:128458. https://doi.org/10.1016/j.snb.2020.128458

    Article  CAS  Google Scholar 

  11. Chen YN, Guo LL, Liu LQ, Song SS, Kuang H, Xu CL (2017) Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J Agric Food Chem 65:8248–8255. https://doi.org/10.1021/acs.jafc.7b03190

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Q, Peng DP, Wang YL, Pan YH, Wan D, Zhang XY, Yuan ZH (2014) A novel hapten and monoclonal-based enzyme-linked immunosorbent assay for sulfonamides in edible animal tissues. Food Chem 154:52–62. https://doi.org/10.1016/j.foodchem.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  13. Wang ZH, Beier RC, Sheng YJ, Zhang SX, Jiang WX, Wang ZP, Wang J, Shen JZ (2013) Monoclonal antibodies with group-specificity toward sulfonamides: selection of hapten and antibody selectivity. Anal Bioanal Chem 405:4027–4037. https://doi.org/10.1007/s00216-013-6785-5

    Article  CAS  PubMed  Google Scholar 

  14. Cliquet P, Cox E, Haasnoot W, Schacht E, Goddeeris BM (2003) Generation of group-specific antibodies against sulfonamides. J Agric Food Chem 51:5835–5842. https://doi.org/10.1021/jf034316c

    Article  CAS  PubMed  Google Scholar 

  15. Chen YN, Liu LQ, Xu LG, Song SS, Kuang H, Gang Cui XuCL (2017) Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. J Nano Res 10:2833–2844. https://doi.org/10.1007/s12274-017-1490-x

    Article  CAS  Google Scholar 

  16. Gordon J, Michel G (2008) Analytical sensitivity limits for lateral flow immunoassays. Clin Chem 54:1250–1259. https://doi.org/10.1373/clinchem.2007.102491

    Article  CAS  PubMed  Google Scholar 

  17. Noguera PS, Posthuma-Trumpie GA, van Tuil M, van der Wal FJ, de Boer A, Moers APHA, van Amerongen A (2011) Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli. Anal Chem 83:8531–8536. https://doi.org/10.1021/ac201823v

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XY, Yu XZ, Wen K, Li CL, Mari GM, Jiang HY, Shi WM, Shen JZ, Wang ZH (2017) Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three Fusarium mycotoxins in maize. J Agric Food Chem 65:8063–8071. https://doi.org/10.1021/acs.jafc.7b02827

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Liu LQ, Kuang H, Xu CL (2019) Preparing monoclonal antibodies and developing immunochromatographic strips for paraquat determination in water. Food Chem 311:12589. https://doi.org/10.1016/j.foodchem.2019.125897

    Article  CAS  Google Scholar 

  20. Zhang XY, Eremin SA, Wen K, Yu XZ, Li CL, Ke YB, Jiang HY, Wang ZH (2017) Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the zearalenone class of mycotoxins in maize. J Agric Food Chem 65:2240–2247. https://doi.org/10.1021/acs.jafc.6b05614

    Article  CAS  PubMed  Google Scholar 

  21. Zhang YG, Duan CF, Li Q, Bai YC, Dong BL, Tang YY, Min H, Hao CQ, Wen K, Shen JZ, Wang Z (2022) Fluorescence polarization immunoassay based on fragmentary hapten for rapid and sensitive screening of polymyxins in human serum. Sens Actuators B Chem 370:132404. https://doi.org/10.1016/j.snb.2022.132404

    Article  CAS  Google Scholar 

  22. Bu T, Zhao S, Bai F, Sun XY, He KY, Wang QZ, Jia P, Tian YM, Zhang M, Wang L (2021) Diverse dyes-embedded Staphylococcus aureus as potential biocarriers for enhancing sensitivity in biosensing. Anal Chem 93:6731–6738. https://doi.org/10.1021/acs.analchem.1c00346

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XY, Li ZZ, Mao YX, Dang M, Huang XQ, Wang ZH, Yang HJ, Bai YC, Zhang HH (2023) Production of high-affinity monoclonal antibody and development of immunoassay for 3-methyl-quinoxaline-2-carboxylic acid detection in swine muscle and liver. Food Chem 407:135175. https://doi.org/10.1016/j.foodchem.2022.135175

    Article  CAS  PubMed  Google Scholar 

  24. Loomans EEMG, Roelen AJM, Damme HSV, Bloemers HPJ, Gribnau TCJ, Schielen WJG (1995) Assessment of the functional affinity constant of monoclonal antibodies using an improved enzyme-linked immunosorbent assay. J Immunol Methods 184:207–217. https://doi.org/10.1016/0022-1759(95)00089-S

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XY, Ding MY, Mao YX, Huang XQ, Xie XH, Song LJ, Qiao MW, Zhang JW, Wang TL, Zhu HY, Dang M (2022) A comparative study of “turn-off” mode and “turn-on” mode lateral flow immunoassay for T-2 toxin detection. Sens Actuators B Chem 359:131545. https://doi.org/10.1016/j.snb.2022.131545

    Article  CAS  Google Scholar 

  26. Kong DK, Liu LQ, Song SS, Suryoprabowo S, Li AK, Kuang H, Wang LB, Xu CL (2016) Gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 8:5245–5253. https://doi.org/10.1039/C5NR09171C

    Article  CAS  PubMed  Google Scholar 

  27. Li ZZ, Wang Y, Li DM, Chen XJ, Li ZL, Gao HL, Cao L, Li SB, Hou YZ (2017) Development of an indirect competitive enzyme-linked immunosorbent assay for screening ethopabate residue in chicken muscle and liver. RSC Adv 7:36072–36080. https://doi.org/10.1039/c6ra20736g

    Article  CAS  Google Scholar 

  28. Lei HT, Shen YD, Song LJ, Yang JY, Chevallier OP, Haughey SA, Wang H, Sun Y (2010) Hapten synthesis and antibody production for the development of a melamine immunoassay. Anal Chim Acta 665:84–90. https://doi.org/10.1016/j.aca.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  29. Wang ZH, Liu MX, Shi WM, Li CL, Zhang SX, Shen JZ (2015) New haptens and antibodies for ractopamine. Food Chem 183:111–114. https://doi.org/10.1016/j.foodchem.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  30. Zhang XY, Wen K, Wang ZH, Jiang HY, Beier RC, Shen JZ (2016) An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M-1 in milk. Food Control 60:588–595. https://doi.org/10.1016/j.foodcont.2015.08.040

    Article  CAS  Google Scholar 

  31. Li ZB, Cui LP, Liu J, Liu JX, Wang JP (2020) Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle. Food Chem 311:125966. https://doi.org/10.1016/j.foodchem.2019.125966

    Article  CAS  PubMed  Google Scholar 

  32. Pastor-Navarro N, Gallego-Iglesias E, Maquieira A, Puchades R (2007) Development of a group-specific immunoassay for sulfonamides: Application to bee honey analysis. Talanta 71:923–933. https://doi.org/10.1016/j.talanta.2006.05.073

    Article  CAS  PubMed  Google Scholar 

  33. Sakharov IYU, Berlina AN, Zherdev AV, Dzantiev BB (2010) Advantages of soybean peroxidase over horseradish peroxidase as the enzyme label in chemiluminescent enzyme-linked immunosorbent assay of sulfamethoxypyridazine. J Agric Food Chem 58:3284–3289. https://doi.org/10.1021/jf904338f

    Article  CAS  PubMed  Google Scholar 

  34. BS EN ISO 23640:2015 (2015) In vitro diagnostic medical devices – evaluation of stability of in vitro diagnostic reagents

  35. Li GQ, Huang YM, Duan ML, Xing KY, You XY, Zhou HD, Liu Y, Liu CW, Liu DF, Lai WH (2019) Biosensing multiplexer based on immunochromatographic assay for rapid and high-throughput classification of Salmonella serogroups. Sens Actuators B Chem 282:317–321. https://doi.org/10.1016/j.snb.2018.11.081

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the financial support of the Natural Science Foundation of China (32172298 and 31902325), the China Postdoctoral Science Foundation (2021M703526), the Key Scientific and Technological Project of Henan Provincial Education Department of China (222102310162 and 232102321121), the Young Talents Project of Henan Agricultural University (30500645), the Henan Postgraduate Joint Training Base Project (YJS2022JD16), and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 23IRTSTHN023).

Author information

Authors and Affiliations

Authors

Contributions

Meng Dang and Zizhe Li contributed to this work equally. Meng Dang: Writing-review & editing, Validation, Supervision. Zizhe Li: Investigation, Formal analysis, Writing-original draft. Yexuan Mao: Validation, Software, Formal analysis. Xianqing Huang: Investigation, Methodology, Writing-original draft. Lianjun Song: Validation, Software, Formal analysis. Wenfeng Li: Software, Formal analysis. Ruxiang Ma: Methodology, Validation,. Yang Liu: Validation, Software, Formal analysis. Liye Wang: Investigation, Methodology. Xuzhi Yu: Experiment supplement, Formal analysis. Huijuan Yang: Validation, Writing-review & investigation, Software, Funding acquisition. Xiya Zhang: Investigation, Methodology, Writing-original draft, Writing-review & editing, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Huijuan Yang or Xiya Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10623 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, M., Li, Z., Mao, Y. et al. A highly sensitive lateral flow immunoassay based on a group-specific monoclonal antibody and amorphous carbon nanoparticles for detection of sulfonamides in milk. Microchim Acta 190, 186 (2023). https://doi.org/10.1007/s00604-023-05766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05766-3

Keywords

Navigation