Skip to main content
Log in

Synthesis and luminescence monitoring of iridium(III) complex-functionalized gold nanoparticles and their application for determination of gold(III) ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new method is presented for the one-step synthesis and real-time monitoring of iridium(III) complex-functionalized AuNPs from the precursor gold(III) chloride (AuCl3). The functionalized AuNPs with an average size of 8 − 20 nm were obtained by the reduction of Au3+ ions by the alkyne group of iridium(III) complexes, which was accompanied by the anchoring iridium(III) complexes on the surface of the nanoparticles. Meanwhile, the luminescence of the iridium(III) complexes was effectively quenched due to distance-dependent fluorescence quenching by AuNPs, thereby enabling luminescence monitoring of the formation process of the functionalized AuNPs and obtaining scattering information and spectral information in real time. Moreover, this method was applied to the determination of Au3+ ions in buffer with a limit of detection of 0.38 μM at 700 nm in luminescence mode, while the detection limit for absorbance was 10.04 μM. Importantly, the multimodal detection strategy alleviates interference from other metal ions. Furthermore, the iridium(III) alkyne complexes were capable of imaging mitochondrial Au3+ ions in living cells. Taken together, this work opens a new avenue for convenient synthesis and monitoring formation of functionalized AuNPs, and also provides a tool for selective determination of Au3+ ions in solution and in cellulo.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  2. Choi J-H, Choi J-W (2020) Metal-enhanced fluorescence by bifunctional Au nanoparticles for highly sensitive and simple detection of proteolytic enzyme. Nano Lett 20:7100–7107

    Article  CAS  PubMed  Google Scholar 

  3. Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K, Takano S, Tomihara R, Kaappa S, Malola S, Dinh C-T, Padmos JD, Ayoo K, Garrett PJ, Nambo M, Horton JH, Sargent EH, Häkkinen H, Tsukuda T, Crudden CM (2019) N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat Chem 11:419–425

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Wang X, Liu J, Lin C, Liu J, Wang J (2022) The Integration of gold nanoparticles with polymerase chain reaction for constructing colorimetric sensing platforms for detection of health-related DNA and proteins. Biosensors 12:421

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  PubMed  Google Scholar 

  6. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  7. Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH (2020) Anisotropic gold nanoparticles: a survey of recent synthetic methodologies. Coord Chem Rev 425:213489

    Article  CAS  Google Scholar 

  8. O’Brien MN, Jones MR, Brown KA, Mirkin CA (2014) Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J Am Chem Soc 136:7603–7606

    Article  CAS  PubMed  Google Scholar 

  9. Niihori Y, Kikuchi Y, Kato A, Matsuzaki M, Negishi Y (2015) Understanding ligand-exchange reactions on thiolate-protected gold clusters by probing isomer distributions using reversed-phase high-performance liquid chromatography. ACS Nano 9:9347–9356

    Article  CAS  PubMed  Google Scholar 

  10. Huang M, Xiong E, Wang Y, Hu M, Yue H, Tian T, Zhu D, Liu H, Zhou X (2022) Fast microwave heating-based one-step synthesis of DNA and RNA modified gold nanoparticles. Nat Commun 13:968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elliott EW, Ginzburg AL, Kennedy ZC, Feng Z, Hutchison JE (2017) Single-step synthesis of small, azide-functionalized gold nanoparticles: versatile, water-dispersible reagents for click chemistry. Langmuir 33:5796–5802

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Guo L, Huang L, Palanisamy K, Kim D, Chen G (2013) Facile preparation of partially functionalized gold nanoparticles via a surfactant-assisted solid phase approach. J Colloid Interface Sci 409:32–37

    Article  CAS  PubMed  Google Scholar 

  13. Peng C, Yu M, Zheng J (2020) In situ ligand-directed growth of gold nanoparticles in biological tissues. Nano Lett 20:1378–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia N, Wu Z (2021) Controlling ultrasmall gold nanoparticles with atomic precision. Chem Sci 12:2368–2380

    Article  CAS  Google Scholar 

  15. Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS (2022) Real-time and in situ monitoring of the synthesis of silica nanoparticles. ACS Sens 7:1045–1057

    Article  CAS  PubMed  Google Scholar 

  17. Geng H, Pedersen VS, Ma Y, Haghighi T, Dai H, Howes PD, Stevens MM (2022) Noble metal nanoparticle biosensors: from fundamental studies toward point-of-care diagnostics. Acc Chem Res 55:593–604

  18. Wang W, Wu KJ, Vellaisamy K, Leung CH, Ma DL (2020) Peptide-conjugated long-lived theranostic imaging for targeting GRPr in cancer and immune cells. Angew Chem Int Ed 59:17897–17902

    Article  CAS  Google Scholar 

  19. King SM, Claire S, Teixeira RI, Dosumu AN, Carrod AJ, Dehghani H, Hannon MJ, Ward AD, Bicknell R, Botchway SW, Hodges NJ, Pikramenou Z (2018) Iridium nanoparticles for multichannel luminescence lifetime imaging, mapping localization in live cancer cells. J Am Chem Soc 140:10242–10249

    Article  CAS  PubMed  Google Scholar 

  20. Fazzini S, Cassani MC, Ballarin B, Boanini E, Girardon JS, Mamede A-S, Mignani A, Nanni D (2014) Novel synthesis of gold nanoparticles supported on alkyne-functionalized nanosilica. J Phys Chem C 118:24538–24547

    Article  CAS  Google Scholar 

  21. Lin C, Wang J, Yang K, Liu J, Ma D-L, Leung C-H, Wang W (2022) Development of a NIR iridium(III) complex for self-calibrated and luminogenic detection of boron trifluoride. Spectrochim Acta A Mol Biomol Spectrosc 282:121658

    Article  CAS  PubMed  Google Scholar 

  22. Wang W, Vellaisamy K, Li G, Wu C, Ko C-N, Leung C-H, Ma D-L (2017) Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem 89:11679–11684

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Yang C, Lin S, Vellaisamy K, Li G, Tan W, Leung C-H, Ma D-L (2017) First synthesis of an oridonin-conjugated iridium(III) complex for the intracellular tracking of NF-κB in living cells. Chem Eur J 23:4929–4935

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, Li J, Zhang KY, Liu S, Zhao Q (2022) Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 453:214334

    Article  CAS  Google Scholar 

  25. Reineck P (2013) Gómez, Daniel, Ng, Soon Hock, Karg, Matthias, Bell, Toby, Mulvaney, Paul, Bach, Udo, Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core–shell nanoparticles. ACS Nano 7:6636–6648

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharjee S (2016) DLS and zeta potential - What they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Li T, Shen R, Li G, Ling L (2019) Polymerase chain reaction-dynamic light scattering sensor for DNA and protein by using both replication and cleavage properties of taq polymerase. Anal Chem 91:3429–3435

    Article  CAS  PubMed  Google Scholar 

  28. Shaw CF (1999) Gold-based therapeutic agents. Chem Rev 99:2589–2600

    Article  CAS  Google Scholar 

  29. Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang F-X, Zhang W-Y, Zhang Z (2020) Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 11:12888–12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumeria T, Santos A, Losic D (2013) Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) Ions. ACS Appl Mater Interfaces 5:11783–11790

    Article  CAS  PubMed  Google Scholar 

  31. Nam S-H, Lee W-M, Shin Y-J, Yoon S-J, Kim SW, Kwak JI, An Y-J (2014) Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Res 48:126–136

    Article  CAS  PubMed  Google Scholar 

  32. Dolai B, Nayim S, Hossain M, Pahari P, Kumar Atta A (2019) A triazole linked C-glycosyl pyrene fluorescent sensor for selective detection of Au3+ in aqueous solution and its application in bioimaging. Sens Actuators, B Chem 279:476–482

    Article  CAS  Google Scholar 

  33. AbhijnaKrishna R, Velmathi S (2022) A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coord Chem Rev 459:214401

  34. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  CAS  PubMed  Google Scholar 

  35. Chinchilla R (2014) Nájera, Carmen, Chemicals from alkynes with palladium catalysts. Chem Rev 114:1783–1826

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Chen Q, Gan S, Guo Q, Zhang J, Zhang H, Xie Y, Xiao H, Wang W, Sun H (2021) An activatable AIEgen probe for in-situ monitoring and long-term tracking of ferrous ions in living cells. Dyes Pigm 190:109271

    Article  CAS  Google Scholar 

  37. Wang W, Zhang W, Feng Y, Wang S, Lei H, Huang J, Chu H, Li S, Wang X (2018) Strategically modified highly selective mitochondria-targeted two-photon fluorescent probe for Au3+ employing Schiff-base: inhibited C=N isomerization vs. hydrolysis mechanism. Dyes Pigm 150:241–251

    Article  CAS  Google Scholar 

  38. Qiu K, Chen Y, Rees TW, Ji L, Chao H (2019) Organelle-targeting metal complexes: from molecular design to bio-applications. Coord Chem Rev 378:66–86

    Article  CAS  Google Scholar 

  39. Tobita S, Yoshihara T (2016) Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr Opin Chem Biol 33:39–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Basic Research Program of Shaanxi (2021JQ-089, 2021JQ-092), the National Natural Science Foundation of China (22101230), Shanghai Sailing Program (21YF1451200), the Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0659), the Guangdong Basic and Applied Basic Research Foundation (2021A1515110840, 2023A1515011871), the Hainan Province Science and Technology Special Fund (ZDYF2021SHFZ250), the Science and Technology Development Fund, Macau SAR, China (File no. 0007/2020/A1), SKL-QRCM(UM)-2020-2022, the University of Macau, China (MYRG2020-00017-ICMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanhe Wang, Jing Wang or Chung-Hang Leung.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6924 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, J., Kong, L. et al. Synthesis and luminescence monitoring of iridium(III) complex-functionalized gold nanoparticles and their application for determination of gold(III) ions. Microchim Acta 190, 171 (2023). https://doi.org/10.1007/s00604-023-05762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05762-7

Keywords

Navigation