Skip to main content
Log in

Bimetallic AuPt alloy/rod-like CeO2 nanojunctions with high peroxidase-like activity for colorimetric sensing of organophosphorus pesticides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Organophosphorus pesticides (OP) have extensive applications in agriculture, while their overuse causes inevitable residues in food, soil, and water, ultimately being harmful to human health and even causing diverse dysfunctions. Herein, a novel colorimetric platform was established for quantitative determination of malathion based on peroxidase mimic AuPt alloy decorated on CeO2 nanorods (CeO2@AuPt NRs). The synthesized nanozyme oxidized colorless 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. Besides, the oxidized TMB was inversely reduced by ascorbic acid (AA), which were originated from hydrolysis of L-ascorbic acid-2-phosphate (AA2P) with the assistance of acid phosphatase (ACP). Based upon this observation ACP analysis was explored by colorimetry, showing a wid linear range of 0.2 ~ 3.5 U L−1 and a low limit of detection (LOD = 0.085 U L−1, S/N = 3). Furthermore, malathion present in the colorimetric system inhibited the activity of ACP and simultaneously affected the generation of AA, in turn promoting the recovery of the chromogenic reaction. Based on this, the LOD was decreased to 1.5 nM (S/N = 3) for the assay of malathion with a wide linear range of 6 ~ 100 nM. This simple colorimetric platform provides some informative guidelines for determination of other pesticides and disease markers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu P, Li X, Xu X, Niu X, Wang M, Zhu H, Pan J (2021) Analyte-triggered oxidase-mimetic activity loss of Ag3PO4/UiO-66 enables colorimetric detection of malathion completely free from bioenzymes. Sens Actuators B Chem 338:129866

    CAS  Google Scholar 

  2. Kashi G, Nourieh N, Mostashari P, Khushab F (2021) Optimization of extraction conditions and determination of the chlorpyrifos, diazinon, and malathion residues in environment samples: fruit (apple, orange, and tomato). Food Chem 12:100163

    CAS  Google Scholar 

  3. Kadam US, Trinh KH, Kumar V, Lee KW, Cho Y, Can MHT, Lee H, Kim Y, Kim S, Kang J, Kim JY, Chung WS, Hong JC (2022) Identification and structural analysis of novel malathion-specific DNA aptameric sensors designed for food testing. Biomaterials 287:121617

    CAS  PubMed  Google Scholar 

  4. Geed SR, Sawarkar AN, Singh RS, Rai BN (2022) New approach for biodegradation of malathion pesticide by Bacillus sp isolated from agricultural field bioreactor and kinetics J Environ Chem Eng 10 107936

  5. Catalá Icardo M, Lahuerta Zamora L, Torres Cartas S, Meseguer Lloret S (2014) Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). J Chromatogr A 1341:31–40

    PubMed  Google Scholar 

  6. Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126:346–354

    CAS  PubMed  Google Scholar 

  7. Tan L, Guo M, Tan J, Geng Y, Huang S, Tang Y, Su C, Lin C, Liang Y (2019) Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sens Actuators B Chem 291:226–234

    CAS  Google Scholar 

  8. Zhu J, Yang B, Hao H, Peng L, Lou S (2023) Gold nanoparticles-based colorimetric assay of pesticides: a critical study on aptamer’s role and another alternative sensor array strategy. Sens Actuators B Chem 381:133439

    CAS  Google Scholar 

  9. Chen Z, Zhang Z, Qi J, You J, Ma J, Chen L (2023) Colorimetric detection of heavy metal ions with various chromogenic materials: strategies and applications. J Hazard Mater 441:129889

    CAS  PubMed  Google Scholar 

  10. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076

    CAS  PubMed  Google Scholar 

  11. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    CAS  PubMed  Google Scholar 

  12. Zhu Y, Wu J, Han L, Wang X, Li W, Guo H, Wei H (2020) Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal Chem 92:7444–7452

    CAS  PubMed  Google Scholar 

  13. Ouyang X, Tang L, Feng C, Peng B, Liu Y, Ren X, Zhu X, Tan J, Hu X (2020) Au/CeO2/g-C3N4 heterostructures: designing a self-powered aptasensor for ultrasensitive detection of Microcystin-LR by density functional theory. Biosens Bioelectron 164:112328

    CAS  PubMed  Google Scholar 

  14. Dong W, Huang Y (2019) CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Microchim Acta 187:11

    Google Scholar 

  15. Zhang SX, Xue SF, Deng J, Zhang M, Shi G, Zhou T (2016) Polyacrylic acid-coated cerium oxide nanoparticles: an oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens Bioelectron 85:457–463

    CAS  PubMed  Google Scholar 

  16. Liu H, He Y, Li N, Liu Z, Zhang X, Zhang X, Liu Q (2020) Organic–inorganic composite nanorods as an excellent mimicking peroxidases for colorimetric detection and evaluation of antioxidant. ACS Appl Bio Mater 3:2499–2506

    CAS  PubMed  Google Scholar 

  17. He L, Huang G, Liu H, Sang C, Liu X, Chen T Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke Sci Adv 6 eaay9751

  18. Zhao R, Zhang R, Feng L, Dong Y, Zhou J, Qu S, Gai S, Yang D, Ding H, Yang P (2022) Constructing virus-like SiOx/CeO2/VOx nanozymes for 1064 nm light-triggered mild-temperature photothermal therapy and nanozyme catalytic therapy. Nanoscale 14:361–372

    CAS  PubMed  Google Scholar 

  19. Liu X, Iocozzia J, Wang Y, Cui X, Chen Y, Zhao S, Li Z, Lin Z (2017) Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10:402–434

    CAS  Google Scholar 

  20. Yuan K, Sun XC, Yin HJ, Zhou L, Liu HC, Yan CH, Zhang YW (2022) Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: support doping versus bimetallic alloying. J Energy Chem 67:241–249

    CAS  Google Scholar 

  21. Cui X, Wang K, Wang T, Li J, Li C, Wang W, Wang H, Wang Z (2021) Crystal structure analysis of cationic peroxidase from proso millet and identification of its phosphatase active sites. J Agric Food Chem 69:6251–6259

    CAS  PubMed  Google Scholar 

  22. Chen MT, Huang ZX, Ye X, Zhang L, Feng JJ, Wang AJ (2023) Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous FeNC nanosheets for boosting oxygen reduction reaction. J Colloid Interface Sci 637:216–224

    CAS  PubMed  Google Scholar 

  23. Lian J, Liu P, Li X, Bian B, Zhang X, Liu Z, Zhang X, Fan G, Gao L, Liu Q (2019) Multi-layer CeO2-wrapped Ag2S microspheres with enhanced peroxidase-like activity for sensitive detection of dopamine. Colloids Surf A Physicochem Eng Asp 565:1–7

    CAS  Google Scholar 

  24. Liu Y, Zhu LY, Feng P, Dang C, Li M, Lu HL, Gao L (2022) Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing. Sens Actuators B Chem 367:132024

    CAS  Google Scholar 

  25. Zhang W, Chen YP, Zhang L, Feng JJ, Li XS, Wang AJ (2022) Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction. J Colloid Interface Sci 626:653–661

    CAS  PubMed  Google Scholar 

  26. Cheng P, Guo P, Sun K, Zhao Y, Liu D, He D (2021) CeO2 decorated graphene as separator modification material for capture and boost conversion of polysulfide in lithium-sulfur batteries. J Membr Sci 619:118780

    CAS  Google Scholar 

  27. Sharma C, Ansari S, Ansari MS, Satsangee SP (2022) Phyto-mediated synthesis of Pt and Au/Pt bimetallic nanoparticles using Syzygium aromaticum bud-extract: study of their catalytic, antibacterial, and antioxidant activities. Ind Eng Chem Res 111:499–508

    CAS  Google Scholar 

  28. Zhu JH, Gou H, Zhao T, Mei LP, Wang AJ, Feng JJ (2022) Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag2S/Ag decorated ZnIn2S4/C3N4 3D/2D Z-scheme heterostructures and amplified by Au/Cu2+-boron-nitride nanozyme. Biosens Bioelectron 203:114048

    CAS  PubMed  Google Scholar 

  29. Cui K, Zhou C, Zhang B, Zhang L, Liu Y, Hao S, Tang X, Huang Y, Yu J (2021) Enhanced catalytic activity induced by the nanostructuring effect in Pd decoration onto doped ceria enabling an origami paper analytical device for high performance of amyloid-β bioassay. ACS Appl Mater Interfaces 13:33937–33947

    CAS  PubMed  Google Scholar 

  30. Yang ZH, Ren S, Zhuo Y, Yuan R, Chai YQ (2017) Cu/Mn double-doped CeO2 nanocomposites as signal tags and signal amplifiers for sensitive electrochemical detection of procalcitonin. Anal Chem 89:13349–13356

    CAS  PubMed  Google Scholar 

  31. Ke J, Xiao JW, Zhu W, Liu H, Si R, Zhang YW, Yan CH (2013) Dopant-induced modification of active site structure and surface bonding mode for high-performance nanocatalysts: CO oxidation on capping-free (110)-oriented CeO2: Ln (Ln = La–Lu) nanowires. J Am Chem Soc 135:15191–15200

    CAS  PubMed  Google Scholar 

  32. Gao R, Zhang D, Maitarad P, Shi L, Rungrotmongkol T, Li H, Zhang J, Cao W (2013) Morphology-dependent properties of MnOx/ZrO2–CeO2 nanostructures for the selective catalytic reduction of NO with NH3. J Phys Chem C 117:10502–10511

    CAS  Google Scholar 

  33. Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R (2022) Electrochemical aptasensor based on Ce3NbO7/CeO2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection J Hazard Mater 438 129491

  34. Rahmi Mawarnis E, El Bahy SM, She’irey YAA, A, Roza L, El Azab IH, Mersal GAM, El Bahy ZM, Ibrahim MM, Ali Umar A, (2022) Crystal growth and catalytic properties of AgPt and AuPt bimetallic nanostructures under surfactant effect. Inorg Chem Commun 143:109737

    CAS  Google Scholar 

  35. Xian T, Sun X, Di L, Li H, Yang H (2021) Improved photocatalytic degradation and reduction performance of Bi2O3 by the decoration of AuPt alloy nanoparticles. Opt Mater 111:110614

    CAS  Google Scholar 

  36. Wu T, Song X, Ren X, Dai L, Ma H, Wu D, Li Y, Wei Q, Ju H (2022) Catalytic decomposition of the hole-derived H2O2 by AgBiS2@Ag nanozyme to enhance the photocurrent of Z-Scheme BiVO4/ZnIn2S4 photoelectrode in microfluidic immunosensing platform. Anal Chem 94:12127–12135

    CAS  PubMed  Google Scholar 

  37. Deng D, Wen S, Wang Y, Liu J, Li F, Yang X (2022) Covalent organic framework composites TpPa@CeO2 with catalytic activities for sensitive colorimetric detection of ascorbic acid. Microchem J 182:107924

    CAS  Google Scholar 

  38. Peng LJ, Zhang CY, Zhang WY, Zhou HY, Yang FQ (2022) The peroxidase-like catalytic activity of in situ prepared cobalt carbonate and its applications in colorimetric detection of hydrogen peroxide, glucose and ascorbic acid. Colloids Surf A Physicochem Eng Asp 651:129744

    CAS  Google Scholar 

  39. Yang H, Sun Z, Qin X, Wu H, Zhang H, Liu G (2022) Ultrasmall Au nanoparticles modified 2D metalloporphyrinic metal-organic framework nanosheets with high peroxidase-like activity for colorimetric detection of organophosphorus pesticides. Food Chem 376:131906

    CAS  Google Scholar 

  40. Choudhury B, Choudhury A (2012) Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater Chem Phys 131:666–671

    CAS  Google Scholar 

  41. Wang M, Shen M, Jin X, Tian J, Shao Y, Zhang L, Li Y, Shi J (2022) Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem Eng J 427:130987

    CAS  Google Scholar 

  42. Cai S, Han Q, Qi C, Lian Z, Jia X, Yang R, Wang C (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8:3685–3693

    CAS  PubMed  Google Scholar 

  43. Guo X, Chen M, Jing L, Li J, Li Y, Ding R, Zhang X (2021) Porous polymers from octa(amino-phenyl)silsesquioxane and metalloporphyrin as peroxidase-mimicking enzyme for malathion colorimetric sensor. Colloids Surf B 207:112010

    CAS  Google Scholar 

  44. Huang Y, Feng H, Liu W, Zhou Y, Tang C, Ao H, Zhao M, Chen G, Chen J, Qian Z (2016) Luminescent aggregated copper nanoclusters nanoswitch controlled by hydrophobic interaction for real-time monitoring of acid phosphatase activity. Anal Chem 88:11575–11583

    CAS  PubMed  Google Scholar 

  45. Chen S, Li Z, Xue R, Huang Z, Jia Q (2022) Confining copper nanoclusters in three dimensional mesoporous silica particles: fabrication of an enhanced emission platform for “turn off-on” detection of acid phosphatase activity. Anal Chim Acta 1192:339387

    CAS  PubMed  Google Scholar 

  46. Hassan SSM, Sayour HEM, Kamel AH (2009) A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor. Anal Chim Acta 640:75–81

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Zhejiang Public Welfare Technology Application Research Project (LGG19B050001) and National Students’ Innovation and Entrepreneurship Training Program of Zhejiang Normal University (202210345026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Qu or Jiu-Ju Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 865 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DN., Mao, YW., Qu, P. et al. Bimetallic AuPt alloy/rod-like CeO2 nanojunctions with high peroxidase-like activity for colorimetric sensing of organophosphorus pesticides. Microchim Acta 190, 220 (2023). https://doi.org/10.1007/s00604-023-05757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05757-4

Keywords

Navigation