Skip to main content
Log in

Quantification of 25OHD in serum by ID-LC-MS/MS based on oriented immobilization of antibody on magnetic materials

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic nanomaterials are widely used, but co-adsorption of impurities will lead to saturation. In this study, the aim was to prepare a magnetic nano-immunosorbent material based on orienting immobilization that can purify and separate 25-hydroxyvitamin D (25OHD) from serum and provides a new concept of sample pretreatment technology. Streptococcus protein G (SPG) was modified on the surface of the chitosan magnetic material, and the antibody was oriented immobilized using the ability of SPG to specifically bind to the Fc region of the monoclonal antibody. The antigen-binding domain was fully exposed and made up for the deficiency of the antibody random immobilization. Compared with the antibody in the random binding format, this oriented immobilization strategy can increase the effective activity of the antibody, and the amount of antibody consumed is saved to a quarter of the former. The new method is simple, rapid, and sensitive, without consuming a lot of organic reagents, and can enrich 25OHD after simple protein precipitation. Combining with liquid chromatography-tandem mass spectrometry (LC-MS/MS), the analysis can be completed in less than 30 min. For 25OHD2 and 25OHD3, the LOD was 0.021 and 0.017 ng mL−1, respectively, and the LOQ was 0.070 and 0.058 ng mL−1, respectively. The results indicated that the magnetic nanomaterials based on oriented immobilization can be applied as an effective, sensitive, and attractive adsorbent to the enrichment of serum 25OHD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hossein-nezhad A, Holick MF (2013) Vitamin D for health: a global perspective. Mayo Clin Proc 88(7):720–755. https://doi.org/10.1016/j.mayocp.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  2. Tang JCY, Nicholls H, Piec I, Washbourne CJ, Dutton JJ, Jackson S, Greeves J, Fraser WD (2017) Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC-MS/MS method. J Nutr Biochem 46:21–29. https://doi.org/10.1016/j.jnutbio.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  3. Cai Z, Zhang Q, Xia Z, Zheng S, Zeng L, Han L, Yan J, Ke P, Zhuang J, Wu X, Huang X (2021) Correction to: determination of serum 25-hydroxyvitamin D status among population in southern China by a high accuracy LC-MS/MS method traced to reference measurement procedure. Nutr Metab 18(1). https://doi.org/10.1186/s12986-021-00558-z

  4. Müller MJ, Volmer DA (2015) Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D. Clin Chem 61(8):1033–1048. https://doi.org/10.1373/clinchem.2015.241430

    Article  CAS  PubMed  Google Scholar 

  5. Tai SSC, Bedner M, Phinney KW (2010) Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography−tandem mass spectrometry. Anal Chem 82(5):1942–1948. https://doi.org/10.1021/ac9026862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Le J, Yuan T, Geng J, Wang S, Li Y, Zhang B (2019) Acylation derivatization based LC-MS analysis of 25-hydroxyvitamin D from finger-prick blood. J Lipid Res 60(5):1058–1064. https://doi.org/10.1194/jlr.D092197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van den Ouweland JMW (2016) Analysis of vitamin D metabolites by liquid chromatography-tandem mass spectrometry. Trends Anal Chem 84:117–130. https://doi.org/10.1016/j.trac.2016.02.005

    Article  CAS  Google Scholar 

  8. Fanali C, D'Orazio G, Fanali S, Gentili A (2017) Advanced analytical techniques for fat-soluble vitamin analysis. Trends Anal Chem 87:82–97. https://doi.org/10.1016/j.trac.2016.12.001

    Article  CAS  Google Scholar 

  9. Tuddenham C, Greaves RF, Rajapaksa AE, Wark JD, Zakaria R (2021) Detection of vitamin D metabolites in breast milk: perspectives and challenges for measurement by liquid chromatography tandem-mass spectrometry. Clin Biochem 97:1–10. https://doi.org/10.1016/j.clinbiochem.2021.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Yin S, Yang Y, Wu L, Li Y, Sun C (2019) Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. Trends Anal Chem 110:204–220. https://doi.org/10.1016/j.trac.2018.11.008

    Article  CAS  Google Scholar 

  11. Petruzziello F, Grand-Guillaume Perrenoud A, Thorimbert A, Fogwill M, Rezzi S (2017) Quantitative profiling of endogenous fat-soluble vitamins and carotenoids in human plasma using an improved UHPSFC-ESI-MS interface. Anal Chem 89(14):7615–7622. https://doi.org/10.1021/acs.analchem.7b01476

    Article  CAS  PubMed  Google Scholar 

  12. Abu Kassim NS, Shaw PN, Hewavitharana AK (2018) Simultaneous determination of 12 vitamin D compounds in human serum using online sample preparation and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1533:57–65. https://doi.org/10.1016/j.chroma.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  13. Jiao Z, Jiao S, Guo Z, Chen H, Zhang N, Huang W (2017) Determination of trace vitamin D in milk samples by graphene-based magnetic solid-phase extraction method coupled with HPLC. Food Anal Methods 10(3):820–826. https://doi.org/10.1007/s12161-016-0633-0

    Article  Google Scholar 

  14. Sereshti H, Toloutehrani A, Nodeh HR (2020) Determination of cholecalciferol (vitamin D3) in bovine milk by dispersive micro-solid phase extraction based on the magnetic three-dimensional graphene-sporopollenin sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 1136:121907. https://doi.org/10.1016/j.jchromb.2019.121907

    Article  CAS  PubMed  Google Scholar 

  15. Tonigold M, Simon J, Estupiñán D, Kokkinopoulou M, Reinholz J, Kintzel U, Kaltbeitzel A, Renz P, Domogalla MP, Steinbrink K, Lieberwirth I, Crespy D, Landfester K, Mailänder V (2018) Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat Nanotechnol 13(9):862–869. https://doi.org/10.1038/s41565-018-0171-6

    Article  CAS  PubMed  Google Scholar 

  16. Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ (2018) Recent advances in the generation of antibody–nanomaterial conjugates. Adv Healthc Mater 7(1):1700607. https://doi.org/10.1002/adhm.201700607

    Article  CAS  Google Scholar 

  17. Lou D, Fan L, Cui Y, Zhu Y, Gu N, Zhang Y (2018) Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal Chem 90(11):6502–6508. https://doi.org/10.1021/acs.analchem.7b05410

    Article  CAS  PubMed  Google Scholar 

  18. Niu Y, Matos AI, Abrantes LM, Viana AS, Jin G (2012) Antibody oriented immobilization on gold using the reaction between carbon disulfide and amine groups and its application in immunosensing. Langmuir 28(51):17718–17725. https://doi.org/10.1021/la303032f

    Article  CAS  PubMed  Google Scholar 

  19. Stephens ME, Ellis TN, Huebner JS, Kelly EM, Bowers DF (2015) Streptococcal protein G enhances antibody binding to platinum sensor surfaces. J Sens Technol 05(01):1–6. https://doi.org/10.4236/jst.2015.51001

    Article  Google Scholar 

  20. Moon J, Byun J, Kim H, Jeong J, Lim EK, Jung J, Cho S, Cho WK, Kang T (2019) Surface-independent and oriented immobilization of antibody via one-step polydopamine/protein G coating: application to influenza virus immunoassay. Macromol Biosci 19(6):1800486. https://doi.org/10.1002/mabi.201800486

    Article  CAS  Google Scholar 

  21. Zong Y, Tan X, Xiao J, Zhang X, Xia X, Sun H (2019) Half-life extension of porcine interferon-α by fusion to the IgG-binding domain of streptococcal G protein. Protein Expr Purif 153:53–58. https://doi.org/10.1016/j.pep.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Yu J (2016) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183(1):1–19. https://doi.org/10.1007/s00604-015-1623-4

    Article  CAS  Google Scholar 

  23. Qi H, Wang C, Cheng N (2010) Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchim Acta 170(1-2):33–38. https://doi.org/10.1007/s00604-010-0382-5

    Article  CAS  Google Scholar 

  24. Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L (2014) Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Interfaces 6(5):3421–3426. https://doi.org/10.1021/am405562c

    Article  CAS  PubMed  Google Scholar 

  25. Mao X, Yu B, Li Z, Li Z, Shi G (2022) Comparison of lateral flow immunoassays based on oriented and nonoriented immobilization of antibodies for the detection of aflatoxin B1. Anal Chim Acta 1221:340135. https://doi.org/10.1016/j.aca.2022.340135

    Article  CAS  PubMed  Google Scholar 

  26. Anderson GP, Liu JL, Shriver-Lake LC, Zabetakis D, Sugiharto VA, Chen H, Lee C, Defang GN, Wu SL, Venkateswaran N, Goldman ER (2019) Oriented immobilization of single-domain antibodies using SpyTag/SpyCatcher yields improved limits of detection. Anal Chem 91(15):9424–9429. https://doi.org/10.1021/acs.analchem.9b02096

    Article  CAS  PubMed  Google Scholar 

  27. Neubert H, Jacoby ES, Bansal SS, Iles RK, Cowan DA, Kicman AT (2002) Enhanced affinity capture MALDI-TOF MS: orientation of an immunoglobulin G using recombinant protein G. Anal Chem 74(15):3677–3683. https://doi.org/10.1021/ac025558z

    Article  CAS  PubMed  Google Scholar 

  28. Huang J, Xie Z, Xie L, Luo S, Zeng T, Zhang Y, Zhang M, Wang S, Li M, Wei Y, Fan Q, Xie Z, Deng X, Li D (2022) Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces. Sci Rep-Uk 12(1). https://doi.org/10.1038/s41598-022-26768-w

  29. Polli F, D'Agostino C, Zumpano R, De Martino V, Favero G, Colangelo L, Minisola S, Mazzei F (2023) ASu@MNPs-based electrochemical immunosensor for vitamin D3 serum samples analysis. Talanta 251:123755. https://doi.org/10.1016/j.talanta.2022.123755

    Article  CAS  PubMed  Google Scholar 

  30. Chauhan D, Gupta PK, Solanki PR (2018) Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D3 detection. Mater Sci Eng C Mater Biol Appl 93:145–156. https://doi.org/10.1016/j.msec.2018.07.036

    Article  CAS  PubMed  Google Scholar 

  31. Wan D, Yang J, Barnych B, Hwang SH, KSS L, Cui Y, Niu J, Watsky MA, Hammock BD (2017) A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J Lipid Res 58(4):798–808. https://doi.org/10.1194/jlr.D073536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mena-Bravo A, Priego-Capote F, Luque De Castro MD (2016) Two-dimensional liquid chromatography coupled to tandem mass spectrometry for vitamin D metabolite profiling including the C3-epimer-25-monohydroxyvitamin D3. J Chromatogr A 1451:50–57. https://doi.org/10.1016/j.chroma.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  33. Rola R, Kowalski K, Bieńkowski T, Kołodyńska-Goworek A, Studzińska S (2019) Development of a method for multiple vitamin D metabolite measurements by liquid chromatography coupled with tandem mass spectrometry in dried blood spots. Analyst 144(1):299–309. https://doi.org/10.1039/C8AN01422A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (2021YFC2401100), the National Natural Science Foundation of China (21927812), and the Research Project of the National Institute of Metrology (AKY1934, AKYZZ2122). We sincerely thank Xiaoting Qiao, Zhanying Chu, Lulu Feng, and Xinchi Yin for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You Jiang, Xinhua Dai or Xiang Fang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, K., Xie, J., Qu, Z. et al. Quantification of 25OHD in serum by ID-LC-MS/MS based on oriented immobilization of antibody on magnetic materials. Microchim Acta 190, 216 (2023). https://doi.org/10.1007/s00604-023-05749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05749-4

Keywords

Navigation